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Problem 1 (Kernel)(0.5%)

Consider the following data points:

• c1 = {(3, 3), (3,−3), (−3, 3), (−3,−3)}

• c2 = {(6, 6), (6,−6), (−6, 6), (−6,−6)}

The data are not linearly separable in this case. Write down a feature map and kernel function to transform
the data into a new space, in which the data are linearly separable. Note that you do not just give me a
feature map; please explain why.

Problem 2 (SVM with Gaussian kernel)(1.5%)

Consider the task of training a support vector machine using the Gaussian kernel K(x, z) = exp(−∥x−z∥2

τ2 ).
We will show that as long as there are no two identical points in the training set, we can always find a value
for the bandwidth parameter τ such that the SVM achieves zero training error.

Recall from class that the decision function learned by the support vector machine can be written as

f(x) =

N∑
i=1

αiyik(xi, x) + b

Assume that the training data {(x1, y1), · · · , (xN , yN )} consists of points which are separated by at least
distance of ϵ; that is, ∥xj − xi∥ ≥ ϵ, for any i ̸= j. For simplicity, we assume αi = 1 for all i = 1, · · · ,m and
b = 0. Find values for the Gaussian kernel width τ such that xi is correctly classified, for all i = 1, · · · , N ,
e.g., f(xi)yi > 0 for all i = 1, · · · , N .

Hint: Notice that for y ∈ {−1,+1} the prediction on xi will be correct if |f (xi)− yi| < 1, so find a value
of τ that satisfies this inequality for all i.

Problem 3 (Support Vector Regression)(2%)

Suppose we are given a training set {(x1, y1), · · · , (xm, ym)}, where xi ∈ R(n+1) and yi ∈ R. We would like
to find a hypothesis of the form f(x) = wTx + b. It is possible that no such function f(x) exists to satisfy
these constraints for all points. To deal with otherwise infeasible constraints, we introduce slack variables ξi
for each point. The (convex) optimization problem is

min
w,b,ξ

1

2
∥w∥2 + C

m∑
i=1

ξi (1)

s.t. yi − wTxi − b ≤ ϵ+ ξi i = 1, . . . ,m (2)

wTxi + b− yi ≤ ϵ+ ξi i = 1, . . . ,m (3)

ξi ≥ 0 i = 1, . . . ,m (4)

where ϵ > 0 is a given, fixed value and C > 0. Denote that ξ = (ξ1, · · · , ξm).
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(a) Write down the Lagrangian for the optimization problem above. Consider the sets of Lagrange mul-
tiplier αi, α

∗
i , βi corresponding to the (2), (3), and (4), so that the Lagrangian would be written as

L(w, b, ξ, α, α∗, β), where α = (α1, · · · , αm), α∗ = (α∗
1, · · · , α∗

m), and β = (β1, · · · , βm).

(b) Derive the dual optimization problem. You will have to take derivatives of the Lagrangian with respect
to w, b, and ξ

(c) Suppose that (w̄, b̄, ξ̄) and (ᾱ, ᾱ∗, β̄) are the optimal solutions to a primal and dual optimization prob-
lem, respectively.

Denote w̄ =
∑m

i=1(ᾱi − ᾱ∗
i )xi

(1) Prove that

b̄ = argmin
b∈R

C

m∑
i=1

max(|yi − (w̄Txi + b)| − ϵ, 0) (5)

(2) Define e = yi −
(
wTxi + b̄

)
Prove that
ᾱi = ᾱ∗

i = 0, ξ̄i = 0, if |e| < ϵ
0 ≤ ᾱi ≤ C, ξ̄i = 0, if e = ϵ
0 ≤ ᾱ∗

i ≤ C, ξ̄i = 0, if e = −ϵ
ᾱi = C, ξ̄i = e− ϵ if e > ϵ
ᾱ∗
i = C, ξ̄i = −(e+ ϵ) if e < −ϵ

(6)

(d) Show that the algorithm can be kernelized and write down the kernel form of the decision function.
For this, you have to show that

(1) The dual optimization objective can be written in terms of inner products or training examples

(2) At test time, given a new x the hypothesis f(x) can also be computed in terms of inner produce.

Problem 4 (Sparse SVM)(2%)

Given training data of N input-output pairs D = ((xi, yi))
N
i=1, where xi ∈ X and yi ∈ {±1}. One can give

two types of arguments in favor of the SVM algorithm: one based on the sparsity of the support vectors,
another based on the notion of margin. Suppose instead of maximizing the margin, we choose instead to
maximize sparsity by minimizing the p-norm of the vector α = (α1, ..., αN ) that defines the weight vector
w, for some p ≥ 1. In this question we consider the case p = 2, which leads to the following optimization
problem:

minimize f(α, b, ξ) = 1
2

∑N
i=1 α

2
i +

∑N
i=1 Ciξi

subject to yi

(∑N
j=1 αjyjxi · xj + b

)
≥ 1− ξi, i ∈ 1, N

variables b ∈ R, αi ≥ 0, ξi ≥ 0, i ∈ 1, N

which can be rewritten in the following primal problem:

minimize f(α, b, ξ) = 1
2

∑N
i=1 α

2
i +

∑N
i=1 Ciξi

subject to
g1,i(α, b, ξ) = 1− ξi − yi

(∑N
j=1 αjyjxi · xj + b

)
≤ 0

g2,i(α, b, ξ) = −αi ≤ 0
g3,i(α, b, ξ) = −ξi ≤ 0

 i ∈ 1, N

variables α = (α1, ..., αN ) ∈ RN , b ∈ R, ξ = (ξ1, ..., ξN ) ∈ RN

(7)

as well as its Lagrangian dual problem:

maximize θ(ω, β,γ) = infα∈RN ,b∈R,ξ∈RN L(α, b, ξ,ω, β,γ)
subject to ωi ≥ 0, βi ≥ 0, γi ≥ 0, i ∈ 1, N
variables ω = (ω1, ..., ωN ) ∈ RN , β = (β1, ..., βN ) ∈ RN ,γ = (γ1, ..., γN ) ∈ RN

(8)

1. Write down the Lagrangian function L(α, b, ξ,ω, β,γ) in explicit form of α, b, ξ,ω, β,γ.

2



2. Show that the duality gap between (7) and (8) is zero.

3. Derive θ(ω, β,γ) in explicit form of dual variables ω, β,γ.

4. Show that the dual problem can be simplified as

maximize
∑N

i=1 ωi − 1
2

∑N
i=1

(∑N
j=1 ωjyjyixj · xi + βi)

2

subject to
∑N

i=1 ωiyi = 0
variables 0 ≤ ωi ≤ Ci, i = 1, ..., N

(9)

5. Suppose (ᾱ, b̄, ξ̄) and (ω̄, β̄, γ̄) are the optimal solutions to problems (7) and (8) respectively. Denote

w̄ =
∑N

j=1 ᾱjyjxj .

(a) Prove that

ᾱi = max

 N∑
j=1

ω̄jyjyixj · xi, 0

 ∀i = 1, ..., N (10)

(b) Prove that

b̄ =b∈R

N∑
i=1

Ci max (1− yi (w̄ · xi + b) , 0) , (11)

(c) Prove that ξ̄i = max
(
1− yi

(
w̄ · xi + b̄

)
, 0
)
for all i = 1, N .

(d) Prove that
ω̄i = Ci, if yi

(
w̄ · xi + b̄

)
< 1

ω̄i = 0, if yi
(
w̄ · xi + b̄

)
> 1

0 ≤ ω̄i ≤ Ci, if yi
(
w̄ · xi + b̄

)
= 1

 ∀i = 1, ..., N

Problem 5 (Spherical one class SVM)(2%)(Bonus)

Suppose we aim to fit a hypersphere which encompasses a majority of data points x1, ...,xN ∈ RM by
considering the following optimization problem: (here µ and each xi are considered as column vectors)

minimize R2 + 1
ν

∑N
i=1 Ciξi

subject to
∥xi − µ∥2 ≤ R2 + ξi
ξi ≥ 0

}
∀i ∈ 1, N

R ≥ 0
variables R ∈ R,µ ∈ RM , ξ = (ξ1, ..., ξN ) ∈ RN

(12)

where Ci > 0 for each i ∈ 1, N , and 0 < ν <
∑N

i=1 Ci. Let ρ = R2 and rewrite (12) in the form of primal
problem:

minimize f(ρ,µ, ξ) = ρ+ 1
ν

∑N
i=1 Ciξi

subject to
g1,i(ρ,µ, ξ) = ∥xi − µ∥2 − ρ− ξi ≤ 0
g2,i(ρ,µ, ξ) = −ξi ≤ 0

}
∀i ∈ 1, N

g3(ρ,µ, ξ) = −ρ ≤ 0
variables ρ ∈ R,µ ∈ RM , ξ ∈ RN

(13)

as well its Lagrangian dual problem:

maximize θ(α, β, γ) = infρ∈R,µ∈RM ,ξ∈RN L(ρ,µ, ξ, α, β, γ)
subject to αi ≥ 0, βi ≥ 0 ∀i ∈ 1, N

γ ≥ 0
variables α = (α1, ..., αN ) ∈ RN , β = (β1, ..., βN ) ∈ RN , γ ∈ R

(14)

1. Write down the Lagrangian function L(ρ,µ, ξ, α, β, γ) in explicit form of ρ,µ, ξ, α, β, γ.

2. Show that the duality gap between (13) and (14) is zero.
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3. Derive θ(α, β, γ) in explicit form of dual variables α, β, γ.

4. Show that the dual problem can be simplified as

maximize ∥α∥1
(∑N

i=1 α̂i∥xi∥2 −
∑

1≤i,j≤N α̂iα̂jx
T
i xj

)
subject to

∑N
i=1 αi ≤ 1

variables 0 ≤ αi ≤ Ci

ν , i ∈ 1, N

(15)

where ∥α∥1 =
∑N

i=1 αi and αi = ∥α∥1α̂i.

5. Suppose (ρ̄, µ̄, ξ̄) and (ᾱ, β̄, γ̄) are optimal solutions to problems (13) and (14), respectively.

(a) Show that ∥ᾱ∥1µ̄ =
∑N

i=1 ᾱixi.

(b) Show that

ρ̄ ∈ρ≥0

(
ρ+

1

ν

N∑
i=1

Ci max(∥xi − µ̄∥2 − ρ, 0)

)
.

(c) Show that

min

ρ ≥ 0 :
∑

i:∥xi−µ̄∥2>ρ

Ci ≤ ν

 ≤ ρ̄ ≤ min

ρ ≥ 0 :
∑

i:∥xi−µ̄∥2>ρ

Ci < ν

 . (16)

(d) Prove that ξ̄i = max
(
∥xi − µ̄∥2 − ρ̄, 0

)
for each i ∈ 1, N .

(e) Prove that  ᾱi = Ci/ν , if ∥xi − µ̄∥2 > ρ̄
ᾱi = 0 , if ∥xi − µ̄∥2 < ρ̄
0 ≤ ᾱi ≤ Ci/ν , if ∥xi − µ̄∥2 = ρ̄

.

6. Suppose Ci = 1/n for each i ∈ 1, n. What is the physical meaning of ν?

Version Description

1. First Edition: Finish Problem 1 to 5
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