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Problem 1 (EM algorithm for mixture of Bernoulli model)(1.5%)

Consider the generative model parameterized by θ = (πk,µk)
K
k=1, where π1, ..., πK ∈ [0, 1] satisfies

∑K
k=1 πk =

1, and that µ1, ...,µK ∈ [0, 1]D, so that the probability of generating a D-dimensional binary vector x =
(x(1), ..., x(D)) ∈ {0, 1}D is

p(x; θ) =

K∑
k=1

πk

D∏
j=1

µx(j)

kj (1− µkj)
1−x(j)

In other words, with given µk, the elements x(1), ..., x(D) are independent, where x(j) follows Bernoulli
distribution of mean µkj . Suppose we observe training data of N binary vectors x1, ...,xN ∈ {0, 1}D, derive
the E-step and M-step equations of the EM algorithm for optimizing the mixing coefficients πk and the
Bernoulli means µkj by maximum likelihood.

Problem 2 (EM algorithm for mixture of exponential model)(1.5%)

Given N samples x1, . . . , xN ∈ [0,∞), we would like to cluster them into K clusters. Assume the samples
are generated according to Exponential mixture models

X ∼
K∑
j=1

πjExp(τj)

where π1 + . . .+ πK = 1, and Exp(τ) denotes the exponential distribution with probability density function

fτ (x) =

{
(1/τ)e−x/τ , x ≥ 0
0 , x < 0

We would like to apply Expectation Maximization algorithm to find the maximum likelihood estimation
of parameters θ = {(πk, τk)}Kk=1.

(a) Please write down the E-step and M-step and show that the parameters are updated from θ(t) ={
(π

(t)
k , τ

(t)
k )

}K

k=1
to θ(t+1) =

{
(π

(t+1)
k , τ

(t+1)
k )

}K

k=1
in the following form:

τ
(t+1)
k =

∑N
i=1 δ

(t)
ik xi∑N

i=1 δ
(t)
ik

, π
(t+1)
k =

1

N

N∑
i=1

δ
(t)
ik

(b) What is the closed form expression of δ
(t)
ik ?

Problem 3 (Boosting)(0.5%)

1. Consider training a boosting classifier using decision stumps on the data set illustrated in Figure 1:
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Figure 1: AdaBoost Data set

(a) Which examples will have their weights increased at the end of the first iteration? Circle them.

(b) How many iterations will it take to achieve zero training error? Justify your answers.

2. Suppose AdaBoost is run on N training examples, and suppose on each round that the weighted
training error ϵt of the t’th weak hypothesis is at most 1/2 − γ, for some number 0 < γ < 1/2. After
how many iterations, T , will the combined hypothesis be consistent with the N training examples, i.e.,
achieves zero training error? Your answer should only be expressed in terms of N and γ. (Hint: Recall
that exponential loss is an upper bound for 0-1 loss. What is the training error when 1 example is
misclassified?)

Problem 4 (Expectation Maximization Interpretation behind Semi-
Supervised Learning)(1%)

Given N samples x1, . . . ,xN ∈ Rm as well as their labels y1, . . . , yN ∈ {0, 1, . . . ,K}. Consider the gen-
erative model where each sample xi is generated independently according to Gaussian mixture model
that depends on the label yi, as represented by random variable

Xi ∼
{∑K

j=1 πjN
(
µj ,Σj

)
, if yi = 0

N (µk,Σk) , if yi = k ̸= 0

where π1 + . . . + πK = 1, and N (µ,Σ) denotes the Gaussian distribution with mean µ and covariance
matrix Σ, with probability density function

N (x;µ,Σ) =
1√

(2π)m |Σ|
exp

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)
We would like to apply Expectation Maximization algorithm to find the maximum likelihood estimation

of parameters θ = {(πk,µk,Σk)}Kk=1.

1. Please write down the E-step and M-step and show that the parameters are updated from

θ(t) =
{(

π
(t)
k ,µ

(t)
k ,Σ

(t)
k

)}K

k=1
to θ(t+1) =

{(
π
(t+1)
k ,µ

(t+1)
k ,Σ

(t+1)
k

)}K

k=1
in the following form:

π
(t+1)
k =

∑
i:yi=0 δ

(t)
ik∑

i:yi=0 1

µ
(t+1)
k =

∑
i:yi=k xi +

∑
i:yi=0 δ

(t)
ik xi

Nk +
∑

i:yi=0 δ
(t)
ik

Σ
(t+1)
k =

∑
i:yi=k

(
xi − µ

(t+1)
k

)(
xi − µ

(t+1)
k

)T

+
∑

i:yi=0 δ
(t)
ik

(
xi − µ

(t+1)
k

)(
xi − µ

(t+1)
k

)T

Nk +
∑

i:yi=0 δ
(t)
ik

where Nk =
∑

i:yi=k 1 is the number of samples in class k. Please show your derivations.

2. What is the closed form expression of δ
(t)
ik ? Please show your derivations.
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Problem 5 (Label Propagation Algorithm)(1.5%)

In this problem, we will investigate label propagation algorithm by executing on a toy example. Next, we
will show that the algorithm will convergence, which can be expressed analytically.

Let’s consider the graph that we have seen in HW3 Problem 2.

x1

x2x3

x4

x9 x10

x8

x7 x5 x6

Figure 2: undirected connected graph G with labeled node

We have previously known that x1 node is in Class 1 and x7 node is in Class 2. Now, we want to separate
these 10 nodes into Class 1 and Class 2.

Consider the transition matrix T ,

T i,j =
W̃ i,j∑10

k=1 W̃ k,j

, where W̃ is the adjusted adjacency matrix of the graph G, which is defined as

W̃ = W + δ


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


. δ > 0 is a small number. By adjusting the adjacency matrix, the weight of edge being connected in the
original graph G is 1 + δ and the weight of other edges is δ. Through the adjustment, we can prevent that
the algorithm runs unsupervised due to the isolated labeled nodes. In the toy example, we set δ = 0.01. T i,j

represents the probability that node j will propagate its own state to node i. For example, T 2,1 = T 3,1 =
T 4,1 ≈ 0.326 ≈ 1

3 ,T 1,1 = T 5,1 = T 6,1 = T 7,1 = T 8,1 = T 9,1 = T 10,1 ≈ 0.003, which shows that node 1 will
transfer its label to three neighbors with probability around 1 over 3. Also, it will transfer its label to other
nodes(including itself) with probability slightly greater than zero.

1. Please write down the transition matrix T .

Next, we define the label matrix sequence

Y t ∈ R10×2 t = 0, 1, ...
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where the ith row of Y t means the probability distribution of node xi at time t. In this example, Y t
i,1

means the probability that the node xi lies in Class 1 at time t, and Y t
i,2 means the probability that the

node x lies in Class 2 at time t. We initialize Y 0
1,1 = 1,Y 0

1,2 = 0 because x1 is labeled as Class 1. Also,

Y 0
7,1 = 0,Y 0

7,2 = 1 because x7 is labeled as Class 2. For other nodes i, we initialize Y 0
i,1 = Y 0

i,2 = 0.5.
After defining label matrix Y and transition matrix T , we introduce the algorithm below:

Algorithm 1 Label Propagation Algorithm in Toy Example

Input label matrix Y 0, transition matrix T , tolerance level ϵ
Output node xi ∈ {Class 1, Class 2} i = 1, , , 10

1: procedure Label Propagation(Y 0, T , ϵ=10−8)
2: t = 0
3: repeat
4: t = t + 1
5: Y t = TY t−1 ▷ Random walk to its neighbor
6: Y t

i,j = Y t
i,j/(Y

t
i,1 + Y t

i,2) i = 1, ..., 10, j = 1, 2 ▷ Normalize the probability distribution

7: Y t
1,1 = 1,Y t

1,2 = 0,Y t
7,1 = 0,Y t

7,2 = 1 ▷ Clamp the labeled data

8: until ||Y t − Y t−1||F < ϵ
9: If Y t

i,1 > 0.5 then node xi lies in Class 1, otherwise node xi lies in Class 2, i = 1, ..., 10
10: end procedure
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There are three main procedures in the loop. First, every node propagates it own state to its neighbors
with the transition probability. Next, we normalize the probability distribution for every node. In the last
step, we clamp the probability distribution of the labeled data, which prevents the distribution of labeled
data being influenced by unlabeled data and accelerates the convergence speed of the algorithm.

2. Please execute the algorithm. Write down the iteration number t, Y t, which nodes lies in Class 1 and
which nodes lies in Class 2. Does the result correspond with the graph?

To show the convergence of label propagation algorithm, we consider more general case as the following
statement.

Let (x1, y1), ..., (xl, yl) be labeled data, where yi takes value in {1, .., C}, which indicates that xi lies in
Class yi. Also, we have u unlabeled data (xl+1, yl+1), ..., (xl+u, yl+u), where yj is an unknown value, which
lies in {1, ..., C}.

We can construct the transition matrix T ,

T i,j =
W̃ i,j∑l+u

k=1 W̃ k,j

, where W̃ i,j > 0, i, j = 1, ..., l + u.
Also, we define the label matrix sequence

Y t ∈ R(l+u)×C t = 0, 1, ...

where the ith row of Y t means the probability distribution of node xi at time t. Y t
i,j means the probability

that the node xi lies in Class j at time t. For Y 0, we clamp the first l rows as following,

Y t
i,j = 1{yi = j} i = 1, ..., l, j = 1, ..., C

, which indicates that xi must lies in Class yi. For the other rows, we initialize

Y t
i,j =

1

C
i = l + 1, ..., l + u, j = 1, ..., C

We execute by the algorithm below.

Algorithm 2 Generalized Label Propagation Algorithm

Input label matrix Y 0 and transition matrix T
Output Y ∗

1: procedure Generalize Label Propagation(Y 0, T , t = 0)
2: repeat
3: t = t + 1
4: Y t = TY t−1 ▷ Random walk to its neighbor
5: Y t

i,j = Y t
i,j/

∑C
k=1 Y

t
i,k i = 1, ...l + u, j = 1, ..., C ▷ Normalize the probability distribution

6: Y t
i,j = 1{yi = j} i = 1, ..., l, j = 1, ..., C ▷ Clamp the labeled data

7: until Y t converges to Y ∗

8: end procedure
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Once we get Y ∗, we can conclude that the unlabeled data (xi, yi) belong to Class yi, where

yi = arg max
ȷ

Y ∗
i,j

Next, we want to calculate Y ∗ analytically.

3. Please show that the line 4 and 5 in Algorithm 2 can be combined as

Y t = TY t−1

, where T i,j = T i,j/
∑l+u

k=1 T i,k, i, j = 1, ..., l + u.

We split T to

[
T ll T lu

T ul T uu

]
, where T ll ∈ Rl×l,T uu ∈ Ru×u. Also, we split Y t to[

Y t
L

Y t
U

]
, where Y t

L ∈ Rl,Y t
U ∈ Ru

4. Please show that after an iteration,

Y t
U = T uuY

t−1
U + T ulY

t−1
L , t = 1, 2, ...,

Y t
L = Y t−1

L , t = 1, 2, ...

5. From the above result, we let Y L = Y t
L for any t. Show that for t ≥ 1

Y t
U = T

t

uuY
0
U +

t∑
i=1

T
i−1

uu T ulY L

6. Please show that
∑u

j=1 Tuui,j = γi, where 0 < γi < 1, for i = 1, ..., u. Use the fact to derive∑u
j=1 T

n

uui,j
≤ γn, for i = 1, ..., u, where γ = max

i=1,...,u
γi. Last, derive limn→∞ T

n

uu = O.

7. Define Sn = I + T uu + T
2

uu + ... + T
n−1

uu , Sn(I − T uu) = I − T
n

uu. Use the fact to show that
limn→∞ Sn = (I−T uu)

−1. Combined all the result above, please show that Y ∗
U = (I−T uu))

−1T ulY L.

Hence, Y ∗ =

[
Y L

Y ∗
U

]
, which can be obtained analytically regardless of the initial value Y 0.

8. Please calculate the analytical solution Y ∗ on the toy example above. Does the solution correspond to
the iteration solution Y t?

Version Description

1. First Edition: Finish Problem 1 to 5

2. Second Edition: Revise the data description in Problem 5 Generalized Label Propagation.

3. Third Edition: Revise Problem 5 to make the definition more robust.

4. Fourth Edition: Fix small typo at Problem 5 (5) Y 0 → Y 0
U

5. Fifth Edition: Fix typo at Problem 5 (6)

6. Sixth Edition: Problem 4: edit πt+1
k
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