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Problem 1 (Convolution)(0.5%)

As mentioned in class, image size may change after convolution layers. Consider
a batch of image data with shape (B,W,H, input channels), how will the shape
change after the following convolution layer:

Conv2D (input channels, output channels, kernel size = (k1, k2), stride = (s1, s2), padding = (p1, p2))

For simplicity, the padding tuple means that p1 pixels are padded on both left
and right sides, and p2 pixels are padded on both top and bottom sides.

Problem 2 (Batch Normalization)(1%)

Batch normalization [?] is a popular trick for training deep networks nowa-
days, which aims to preserve the distribution within hidden layers and avoids
vanishing gradient issue. The alogrithm can be written as below:

Algorithm 1 Batch Normalization

Input Feature from data points over a mini-batch B = (xi)
m
i=1

Output yi = BNγ,β(xi)

1: procedure BatchNormalize(B, γ, β)
2: µB ← 1

m

∑m
i=1 xi ▷ mini-batch mean

3: σ2
B ← 1

m

∑m
i=1(xi − µB)

2 ▷ mini-batch variance
4: for i← 1 to m do
5: x̂i ← xi−µB√

σ2
B+ϵ

▷ normalize

6: yi ← γx̂i + β ▷ scale and shift
7: end for
8: return
9: end procedure

During training we need to backpropagate the gradient of loss ℓ through this
transformation, as well as compute the gradients with respect to the parameters
γ, β. Towards this end, please write down the close form expressions for ∂ℓ

∂xi
,
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∂ℓ
∂γ ,

∂ℓ
∂β in terms of xi, µB , σ

2
B , x̂i, yi (given by the forward pass) and ∂ℓ

∂yi
(given

by the backward pass).
- Hint: You may first write down the close form expressions of ∂ℓ

∂x̂i
, ∂ℓ

∂σ2
B
,

∂ℓ
∂µB

, and then use them to compute ∂ℓ
∂xi

, ∂ℓ
∂γ ,

∂ℓ
∂β .

Problem 3 (Constrained Mahalanobis Distance
Minimization Problem)(1.5%)

1. Let Σ ∈ Rm×m be a symmetric positive semi-definite matrix, µ ∈ Rm.
Please construct a set of points x1, ..., xn ∈ Rm such that

1

n

n∑
i=1

(xi − µ)(xi − µ)T = Σ,
1

n

n∑
i=1

xi = µ

- Find the relation between set of points and (µ, Σ) and (µ,Σ) is known

2. Let 1 ≤ k ≤ m, solve the following optimization problem (and justify with
proof):
minimize Trace(ΦTΣΦ)
subject to ΦTΦ = Ik
variables Φ ∈ Rm×k
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Problem 4 (Convergence of K-means Clustering)
(1.5%)

In the K-means clustering algorithm, we are given a set of n points xi ∈ Rd, i ∈
{1, . . . , n} and we want to find the centers of k clusters µ = (µ1, . . . , µk) by
minimizing the average distance from the points to the closest cluster center.
In general, n ≥ k. Define function C : {1, · · · , n} → {1, 2, · · · , k} assigns one of
k clusters to each point in the data set such that C(i) = q if the i-th data point
xi is assigned to the q-th cluster where i ∈ {1, 2, · · · , n} and q ∈ {1, 2, · · · , k}

Formally, we want to minimize the following loss function

L(C,µ) =
n∑

i=1

∥∥xi − µC(i)
∥∥2
2
=

k∑
q=1

∑
i:C(i)=q

∥xi − µq∥22

The K-means algorithm:

2



Algorithm 2 K-means algorithm

Initialize cluster center µj , j = 1, 2, · · · , k (k random xn from data set)
Repeat:

1. Fix µ, update C(i) for each i that minimizes L. Formally, consider a data
point xi, and let C(i) be the assignment from the previous iteration and
C∗(i) be the new assignment obtained as: C∗(i) = argminj=1,··· ,k ∥xi −
µj∥22

2. Fix C, update the centers µj which satisfies

|{i : C(i) = j}|µj =
∑

i:C(i)=j

xi,

for each j, where |{i : C(i) = j}| is the number of elements of set
{i : C(i) = j}.(i.e. Set the cluster centres to be the means of the points in
each cluster.)

The algorithm stops when no change in loss function occurs during the as-
signment step.

Suppose that the algorithm proceeds from iteration t to t+ 1.

1. Consider the points z1, z2, · · · , zm, wherem ≥ 1 . and for i ∈ {1, 2, · · · ,m}, zi ∈
Rd. Let z̄ = 1

m

∑m
i=1 zi be the mean of these points, and let z ∈ Rd be an

arbitrary point in the same (d-dimensional) space. Then

m∑
i=1

∥zi − z∥22 ≥
m∑
i=1

∥zi − z̄∥22

2. Show that L(Ct+1,µt) ≤ L(Ct,µt) i.e. The first step in K-means clustering

3. Show that L(Ct+1,µt+1) ≤ L(Ct+1,µt) i.e. The second step in K-means
clustering. (Hint: Use the result of (a))

4. Use the result in (b) and (c) to show that the loss of k-means clustering
algorithm is monotonic decreasing.(Hint: Show that the sequence {lt},
where lt = L(Ct,µt), which is monotone decreasing (lt+1 ≤ lt,∀t) and
bounded below (lt ≥ 0). Then, we use monotone convergence theorem for
sequences, {lt} converges.)

5. Show that the k-means clustering algorithm converges in finitely many
steps.

Problem 5 (Gradient Descent Convergence) (1.5%)

Suppose the function f : Rn → R is differentiable. Also, f is β-smoothness and
α-strongly convex.

3



β − smoothness : β > 0,∀x,y ∈ Rn, ∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

α−strongly convex : α > 0,∀x,y ∈ Rn, f(x)−f(y)−∇f(y)T (x−y) ≥ α

2
∥x−y∥22

Then we propose a gradient descent algorithm

1. Find a initial θ0.

2. Let θn+1 = θn − η∇θf(θ
n) ∀n ≥ 0, where η = 1

β .

The following problems lead you to prove the gradient descent convergence.

1. Prove the property of β-smoothness function

∀x,y ∈ Rn, f(x)− f(y)−∇f(y)T (x− y) ≤ β

2
∥x− y∥22

(a) Define g : R→ R, g(t) = f(y + t(x− y)). Show that f(x)− f(y) =∫ 1

0
g

′
(t) dt.

(b) Show that g
′
(t) = ∇f(y + t(x− y))T (x− y).

(c) Show that |f(x)− f(y)−∇f(y)T (x−y)| ≤
∫ 1

0
|(∇f(y+ t(x−y))−

∇f(y))T (x− y)| dt.
(d) By Cauchy-Schwarz inequality and the definition of β-smoothness,

show that |f(x)−f(y)−∇f(y)T (x−y)| ≤ β
2 ∥x−y∥22, hence we get

f(x)− f(y)−∇f(y)T (x− y) ≤ β

2
∥x− y∥22

2. Let y = x− 1
β∇f(x) and use 1., prove that

f(x− 1

β
∇f(x))− f(x) ≤ − 1

2β
∥∇f(x)∥22

and

f(x∗)− f(x) ≤ − 1

2β
∥∇f(x)∥22,

where x∗ = argmin
x

f(x).

3. Show that ∀n ≥ 0,

∥θn+1 − θ∗∥22 = ∥θn − θ∗∥22 + η2∥∇θf(θ
n)∥22 − 2η∇θf(θ

n)T (θn − θ∗),

where θ∗ = argmin
θ

f(θ).
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4. Use 2. and the definition of α-strongly convex to prove ∀n ≥ 0

∥θn+1 − θ∗∥22 ≤ (1− α

β
)∥θn − θ∗∥22,

where θ∗ = argmin
θ

f(θ).

5. Use the above inequality to show that θn will converge to θ∗ when n goes
to infinity.

Version Description

1. First Edition: Finish Problem 1 to 5

5


