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Problem 1 (Convolution)(0.5%)

As mentioned in class, image size may change after convolution layers. Consider
a batch of image data with shape (B, W, H, input_channels), how will the shape
change after the following convolution layer:

Conv2D (input_channels, output_channels, kernel_size = (k1, k2), stride = (s1, s2), padding = (p1,p2))

For simplicity, the padding tuple means that p; pixels are padded on both left
and right sides, and p, pixels are padded on both top and bottom sides.

Problem 2 (Batch Normalization)(1%)

Batch normalization [?] is a popular trick for training deep networks nowa-
days, which aims to preserve the distribution within hidden layers and avoids
vanishing gradient issue. The alogrithm can be written as below:

Algorithm 1 Batch Normalization

Input Feature from data points over a mini-batch B = (z;)™,

Output y; = BN, g(z;)
1: procedure BATCHNORMALIZE(B, 7, [3)
2 1B % ST > mini-batch mean
3: 0% % (@ — pB)? > mini-batch variance
4 for i < 1 to m do
5 Ty« S > normalize

\/02B+€

6 Yi < I + 3 > scale and shift
7 end for

8: return

9: end procedure

During training we need to backpropagate the gradient of loss ¢ through this

transformation, as well as compute the gradients with respect to the parameters
v, B. Towards this end, please write down the close form expressions for %,



gﬂ gg in terms of z;, up, 0%, &4, y; (given by the forward pass) and 81) (glven

by the backward pass).
- Hint: You may first write down the close form expressions of 893 , 8% ,

o ot o

9 and then use them to compute Dxi0 Dy 9B

s

Problem 3 (Constrained Mahalanobis Distance
Minimization Problem)(1.5%)

1. Let ¥ € R™ ™ be a symmetric positive semi-definite matrix, p € R™.
Please construct a set of points z1, ..., z, € R™ such that

1 — 1 —
HZ(%_N)(%’—#)T:E» ﬁzxi:lt
i=1 =1

- Find the relation between set of points and (u, ¥) and (p, X) is known

2. Let 1 < k < m, solve the following optimization problem (and justify with
proof):
minimize Trace(®TLP)
subject to  ®T® = I,
variables & € R™*F
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Problem 4 (Convergence of K-means Clustering)

(1.5%)

In the K-means clustering algorithm, we are given a set of n points z; € R%,i €

{1,...,n} and we want to find the centers of k clusters g = (p1,...,ux) by

minimizing the average distance from the points to the closest cluster center.

In general, n > k. Define function C : {1,--- ,n} — {1,2,--- ,k} assigns one of

k clusters to each point in the data set such that C(i) = ¢ if the i-th data point

x; is assigned to the g-th cluster where ¢ € {1,2,--- ,n} and ¢ € {1,2,--- , k}
Formally, we want to minimize the following loss function

Cop) = Z sz - Mc(i)HQ Z Z le Mq”g
i=1

g=14:C(i)=

The K-means algorithm:



Algorithm 2 K-means algorithm

Initialize cluster center u;,j =1,2,--- ,k (k random z,, from data set)
Repeat:

1. Fix p, update C(i) for each ¢ that minimizes L. Formally, consider a data
point z;, and let C(¢) be the assignment from the previous iteration and
C*(i) be the new assignment obtained as: C*(i) = argminj—i,...  [|z; —

2
1513

2. Fix C, update the centers ;; which satisfies
{i:Cl) =iYm= D w
:C(i)=j

for each j, where |{i:C(i) =j}| is the number of elements of set
{i:C(i) = j}.(i.e. Set the cluster centres to be the means of the points in
each cluster.)

The algorithm stops when no change in loss function occurs during the as-
signment step.
Suppose that the algorithm proceeds from iteration ¢ to t + 1.
1. Consider the points 21, 22, -+ - , 2y, wherem > 1. and fori € {1,2,--- ,m}, z; €
RY. Let z = % Yo%, z; be the mean of these points, and let z € R? be an
arbitrary point in the same (d-dimensional) space. Then

m m

D ollz—2llE = Nz — 23
i=1 i=1

2. Show that L(Ct!, ut) < L(Ct, pt) i.e. The first step in K-means clustering

3. Show that L(C'™1, p!*l) < L(C*!, u!) i.e. The second step in K-means
clustering. (Hint: Use the result of (a))

4. Use the result in (b) and (c¢) to show that the loss of k-means clustering
algorithm is monotonic decreasing.(Hint: Show that the sequence {l;},
where [, = L(C', p'), which is monotone decreasing (I;+1 < I;,Vt) and
bounded below (I; > 0). Then, we use monotone convergence theorem for
sequences, {l;} converges.)

5. Show that the k-means clustering algorithm converges in finitely many
steps.

Problem 5 (Gradient Descent Convergence) (1.5%)

Suppose the function f: R™ — R is differentiable. Also, f is S-smoothness and
a-strongly convex.



B — smoothness : 3> 0,Vz,y € R",|Vf(x) — Vf(y)ll2 < Bllz — yll2

a—strongly convex : o > 0,Va,y € R, f(:c)—f(y)—Vf(y)T(w—y) > %Hm—y”%

Then we propose a gradient descent algorithm
1. Find a initial 8°.
2. Let 0" = 0" — Ve f(0™) Vn > 0, where n = %
The following problems lead you to prove the gradient descent convergence.

1. Prove the property of S-smoothness function

Va,y € B", [(@) ~ [(y) - V) (@ ~y) < eyl

(a) Dleﬁ?e g:R—=R,g(t) = f(y+t(x—1y)). Show that f(x)— f(y) =
fo g (t)dt.
(b) Show that ¢ (t) = Vf(y + t(xz — y)) " (x — y).

(c) Show that |f(z) — f(y) — Vf(y)T(@—y)| < [; |(Vf(y+tz—y)) -
Vi) (@ - y)|dt.

(d) By Cauchy-Schwarz inequality and the definition of S-smoothness,
show that | f(z) — f(y) = V()" (x —y)| < 5|z — y|3, hence we get

f(@)~ 1)~ V@) @~ y) < eyl

2. Lety=x — %Vf(a:) and use 1., prove that

1 1
fle— EVf(w)) — flz) < —%va(w)H%
and 1
fl@®) = f(=) < —ﬁllvf(w)\@,
where &* = arg min f(x).
3. Show that Vn > 0,
10741~ 0% = 10" — 0°[13 + 77 Vo (63 — 20V 1 (67)7 (6" — 6,

where 8* = argmin f(0).
0



4. Use 2. and the definition of a-strongly convex to prove Vn > 0

n * a n *
o7 — 073 < (1-3)6" -6 13,

where 8* = argmin f(0).
0

5. Use the above inequality to show that 8™ will converge to 8* when n goes
to infinity.

Version Description

1. First Edition: Finish Problem 1 to 5



