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Problem 1 (Preliminary) (1 pt)

(a) (0.2 pts) Given w ∈ Rm, A ∈ Rm×m. Show that

∇wwTAw = ATw +Aw.

In particular, if A is a symmetric matrix, then

∇wwTAw = 2Aw

(b) (0.2 pts) Given A,B ∈ Rm×m. Show that

∂ tr(AB)

∂aij
= bji (1)

where

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
am1 am2 · · · amm

 , B =


b11 b12 · · · b1m
b21 b22 · · · b2m
...

...
. . .

...
bm1 bm2 · · · bmm


It is common to write (1) as

∂ tr(AB)

∂A
= BT.

(c) (0.6 pts) Prove that
∂ log(det(A))

∂aij
= eTjA

−1ei, (2)

where A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
am1 am2 · · · amm

 ∈ Rm×m is a (non-singular) matrix, and ej is the unit vector

along the j-th axis (e.g. e3 = [0, 0, 1, 0, ..., 0]T ). It is common to write (2) as

∂ log(det(A))

∂A
=

(
A−1

)T
Problem 2 (Classification with Gaussian Mixture Model) (2.4 pts)

In this question, we tackle the binary classification problem through the generative approach, where we
assume the data point X (viewed as a Rd-valued r.v.) and its label Y (viewed as a {C1, C2}-valued r.v.) are
generated according to the generative model (paramerized by θ) as follows:

Pθ[X = x, Y = Ck] = πkfµk,Σk
(x) (k ∈ {1, 2}) (3)
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where θ = (π1, π2,µ1,µ2,Σ1,Σ2) for which

fµk,Σk
(x) =

1

(2π)d/2
1

|Σk|1/2
exp

(
−1

2
(x− µk)

TΣ−1
k (x− µk)

)
.

Now suppose we observe data points x1, ...,xN and their corresponding labels y1, ..., yN .

(a) (1.2 pt)

(i) (0.3 pt) Please write down the likelihood function L(θ) that describes how likely the generative
model would generate the observed data {(xi, yi)}Ni=1 in terms of θ = (π1, π2,µ1,µ2,Σ1,Σ2).

(ii) (0.3 pt) Find the maximum likelihood estimate θ∗ = (π∗
1 , π

∗
2 ,µ

∗
1,µ

∗
2,Σ

∗
1,Σ

∗
2) that maximizes the

likelihood function L(θ).

(iii) (0.3 pt) Write down Pθ[Y = C1|X = x] and Pθ[X = x|Y = C1] in terms of θ = (π1, π2,µ1,µ2,Σ1,Σ2).
What are the physical meaning of the aforementioned quantities?

(iv) (0.3 pt) Express Pθ[Y = C1|X = x] in the form of σ(z), where σ(·) denotes the sigmoid function,
and express z in terms of θ = (π1, π2,µ1,µ2,Σ1,Σ2) and x.

(b) (1.2 pt) Suppose we pose an additional constraint that the covariance matrices of the two Gaussian
distributions are identical, namely Σ1 = Σ2 = Σ, in which the generative model is parameterized by
ϑ = (π1, π2,µ1,µ2,Σ). Redo questions (a) under such setting.

Problem 3 (Application of Gaussian Mixture Model Classifier) (0.6
pts)

In this question, you will train a binary classifier based on the data which can be downloaded from https://reurl.cc/2EZMzn
following the settings in Problem 2. Each data point and its label take the format xi ∈ R2 and yi ∈ {0, 1}.

(a) (0.2 pts) Calculate ϑ∗ = (π∗
1 , π

∗
2 ,µ

∗
1,µ

∗
2,Σ

∗) as in Problem 2 (b) in numbers.

(b) (0.2 pts) Calculate θ∗ = (π∗
1 , π

∗
2 ,µ

∗
1,µ

∗
2,Σ

∗
1,Σ

∗
2) as in Problem 2 (a)(ii) in numbers.

(c) (0.2 pts) Please draw the scatter plot of the data. Which model is better in your opinion between (a)
and (b)? Why?

Problem 4 (Closed-Form Linear Regression Solution) (1 pts + Bonus
1.5 pts)

Consider the linear regression model
y = Xθ + ϵ,

where y ∈ Rn,X ∈ Rn×d,θ ∈ Rd and ϵ ∈ Rn. Denote Xi ∈ R1×d as the i-th row of X, with the following
interpretations:

• If the linear model has the bias term, then write θ = [w1, · · · , wm, b]T and Xi = [xi,1, xi,2, · · · , xi,m, 1],
namely d = m+ 1.

• If the linear model has no bias term, then write θ = [w1, · · · , wd]
T and Xi = [xi,1, xi,2, · · · , xi,m],

namely d = m.

(a) Without the bias term, consider the L2-regularized loss function:∑
i

κi (yi −X iθ)
2
+ λ

∑
j

w2
j , λ > 0.
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Show that the optimal solution that minimizes the loss function is θ∗ =
(
XTKX + λI

)−1

XTKy,

where

K =

κ1 0
. . .

0 κn


is a diagonal matrix and I is the d× d identical matrix.

(b) (Bonus, 1.5 pts) With the bias term, the L2-regularized loss function becomes∑
i

κi (yi −X iθ)
2
+ λ

∑
j

w2
j , λ > 0.

Show that the optimal solution that minimizes the loss function is θ∗ = [w⋆T , b⋆]T , where

w⋆ =

(
X̃

T
KX̃ + λI − 1

Tr (K)
X̃

T
KeeTKX̃

)−1

X̃
T
K

(
y − 1

Tr (K)
eeTKy

)
,

b⋆ =
1

Tr (K)

(
eTKy − eTKX̃w⋆

)
for which e = [1 ... 1]T denotes the all one vector, X = [X̃e], Tr (K) is the trace of the matrix K, and
that K and I are defined as in (a).

Problem 5 (Noise and Regularization) (1 pts)

Consider the linear model fw,b : Rk → R, where w ∈ Rk and b ∈ R, defined as

fw,b(x) = wTx+ b

Given dataset S = {(xi, yi)}Ni=1, if the inputs xi ∈ Rk are contaminated with input noise ηi ∈ Rk, we
may consider the expected sum-of-squares loss in the presence of input noise as

L̃ss(w, b) = E

[
1

2N

N∑
i=1

(fw,b(xi + ηi)− yi)
2

]
where the expectation is taken over the randomness of input noises η1, ...,ηN . Additionally, the inputs (xi)
and the input noise (ηi) are independent.

Now assume the input noises ηi = [ηi,1, ηi,2, ..., ηi,k]
T are random vectors with zero mean E[ηi,j ] = 0, and

the covariance between components is given by

E[ηi,jηi′,j′ ] = δi,i′δj,j′σ
2

where δi,i′ =

{
1 , if i = i′

0 , otherwise.
denotes the Kronecker delta.

Please show that

L̃ss(w, b) =
1

2N

N∑
i=1

(fw,b(xi)− yi)
2
+

σ2

2
∥w∥2

That is, minimizing the expected sum-of-squares loss in the presence of input noise is equivalent to
minimizing noise-free sum-of-squares loss with the addition of a L2-regularization term on the weights.
(Hint: ∥x∥2 = xTx = tr(xxT) and the square of a vector is dot product with itself)

Problem 6 (Mathematical Background) (0 pt)

Please click the following link https://www.cs.cmu.edu/~mgormley/courses/10601/homework/hw1.zip

to download the Homework 1 from CMU 2023 Machine Learning Website. You are encouraged to practice
Section 3 to Section 6 of this homework to brush up some of the mathematical background that will be useful
for this course. This problem will not be graded. However, you are encouraged to consult TA by joining
TA hour if you find any questions.
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Some Tools You Need to Know

1. Orthogonal Matrix

2. Positive Definite, Semipositive Definite

3. Eigenvalue Decomposition, Singular value decomposition

4. Lagrange Multiplier

5. Trace

You can find the definition and the usage by yourself. It is also welcome to discuss with TA in TA hour.
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