
EE 5184 Machine Learning, Fall 2022

Final Exam - Solution

Lecturer: Pei-Yuan Wu

December 19, 2022

This exam contains 8 questions and 115 pts in total. In this exam,

� Jm,nK denotes the set of integers from m to n.

� For any set A, the indicator function 1A(x) is defined as

1A(x) =

{
1 , if x ∈ A
0 , if x ̸∈ A

� The sigmoid function is defined as σ(z) = 1
1+e−z .

� The p-norm of a vector x = (x1, ..., xn) is denoted as

∥x∥p = (xp
1 + · · ·+ xp

n)
1/p.

1. (10%) Weighted ridge regression
Consider the linear regression model fw : w ∈ RM 7→ w·x, where w ∈ RM

is a vector of weights for each feature. The weighted ridge regression solves
the (column) weight vector w ∈ RM through minimizing the following loss
function:

L(w) =

N∑
i=1

ωi(yi −Xiw)2 + λ∥w∥22 (1)

where ((Xi, yi))
N
i=1 is the training data of N input-output pairs, with each

Xi ∈ R1×M being a row vector, and ωi > 0 denotes the “importance” of
the i’th observation, and λ > 0 denotes the regularization coefficient. We
may rewrite (1) in a more compact form

L(w) = (y −Xw)TΩ(y −Xw) + λ∥w∥22

where y = [y1 · · · yN ]T is a column vector of observed outputs, X ∈
RN×M is a matrix with Xi being its i’th row, and Ω = diag(ω1, ..., ωN ).
Suppose L(w) is minimized when w = w0.

(a) (5%) Find w0 in explicit form of X, Ω, λ, and y.
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Figure 1: Fully connected neural newtork with ReLU activation function.

(b) (5%) Find L(w0) in explicit form of X, Ω, λ, and y.

(Hint: Rewrite the loss function in quadratic form L(w) = (w−b)TA(w−
b) +C.)

2. (10%) Principle component analysis classics
Let (xi)

N
i=1 be N data points, where xi = (xi,1, xi,2) ∈ R2 for each i ∈

J1, NK. Suppose your calculator tells you that

N∑
i=1

xi,1 =

N∑
i=1

xi,2 = 0

N∑
i=1

x2
i,1 = 363,

N∑
i=1

xi,1xi,2 = −60,

N∑
i=1

x2
i,2 = 482,

(a) (5%) Find the first principle axis after performing PCA on this data
set.

(b) (5%) Denote x̂i ∈ R2 as the projection of xi to the first principle

axis. Find reconstruction error
∑N

i=1 ∥xi − x̂∥22.

3. (15%) Forward and backward propagation
Consider the fully connected neural network in Figure.1 where each neuron
adopts ReLU activation: The network can be represented as a function
fθ, namely [

y1
y2

]
= fθ

([
x1

x2

])
,

where the parameter θ records all the weights and biases in the neural
network. (You may omit the derivation, however, partial credits may be
granted if you provide derivation though answers being incorrect)

(a) (3%) If (x1, x2) = (2, 3), please compute a11, a
1
2, a

2
1, a

1
2, y1, y2.
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(b) (12%) Following (a), if the groundtruth is (ŷ1, ŷ2) = (22, 12), show
how each weight and bias in the neural network is updated by gradi-
ent descent with an aim to minimize the loss function

L(θ) =

∥∥∥∥[ ŷ1
ŷ2

]
− fθ

([
x1

x2

])∥∥∥∥2
2

where we assume the learning rate is η = 0.01.

4. (10%) Logistic regression with miss labels
Consider a binary classification problem in which each data point xi ∈ RM

is known to belong to one of two classes, as specified by class label ξi ∈
{±1}, and suppose that the procedure for collecting training data is imper-
fect, so that training data are sometimes mislabelled. More elaborately,
for every data point xi, instead of observing its class label ξi, we instead
observe a perturbed class label yi = (−1)ziξi where zi is {0, 1}-valued and
follows Bernoulli distribution

1− P[zi = 0] = P[zi = 1] = πi

where πi ∈ [0, 1] is the probability of mis-labeling the i’th data point.

Given training data of N input-output pairs D = ((xi, yi))
N
i=1, where

xi ∈ RM and yi ∈ {±1}. Consider the generative model

pw,b(ξ = 1|x) = 1− pw,b(ξ = −1|x) = σ(w · x+ b),

where σ denotes the sigmoid function.

(a) (5%) Write down the error function L(w, b) to be minimized so as to
maximize the log-likelihood function of generative model pw,b, assum-
ing each of the N data points (xi, yi) is generated (and labelled/mis-
labelled) independently.

(b) (5%) Describe how to perform maximum likelihood estimation of w
and b by minimizing L(w, b) with gradient descent algorithm. Please
write down the update equation for gradient descent.

5. (10%) Boosting

(a) (7%) Consider training a boosting classifier using decision stumps
on the data set illustrated in Figure.2:

i. (2%) Which examples will have their weights increased at the
end of the first iteration? Circle them.

ii. (5%) How many iterations will it take to achieve zero training
error? Justify your answers.

(b) (3%) Suppose AdaBoost is run on N training examples, and suppose
on each round that the weighted training error ϵt of the t’th weak
hypothesis is at most 1/2 − γ, for some number 0 < γ < 1/2. After
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Figure 2: AdaBoost Data set

how many iterations, T , will the combined hypothesis be consistent
with the N training examples, i.e., achieves zero training error? Your
answer should only be expressed in terms of N and γ. (Hint: Recall
that exponential loss is an upper bound for 0-1 loss. What is the
training error when 1 example is misclassified?)

6. (10%) Manhattan k-means
In this problem, we design K-means algorithm with an aim to minimize
the in-cluster Manhattan distance. Given a set of N data points xi =
(xi,1, ..., xi,M ) ∈ RM (i ∈ J1, NK), we aim to minimize the loss function:

L(C,Ξ) =
N∑
i=1

∥xi − ξC(i)∥1 =

N∑
i=1

M∑
m=1

|xi,m − ξC(i),m| (2)

where Ξ = (ξk)
K
k=1 for which ξk = (ξk,1, ..., ξk,M ) ∈ RM is the centroid of

the k’th cluster, and C : J1, NK → J1,KK is the cluster assignment function
where the i’th data point is assigned to cluster C(i).

(a) (1%) Find θ ∈ R that minimizes
∑5

i=1 |θ − i2|.

Randomly initialize C(0) be a cluster assignment.

(b) (3%) Given cluster assignment C(t−1), what are the cluster centroids
Ξ = (ξk)

K
k=1 that minimizes L(C(t−1),Ξ)? Denote such optimal clus-

ter centroids as Ξ(t).

(c) (3%) Given cluster centroids Ξ(t) = (ξ
(t)
k )Kk=1, what is the cluster

assignment C that minimizes L(C,Ξ(t))? Denote such optimal cluster
assignment as C(t).

(d) (3%) Alternatively optimize the cluster centroids and assignments
by iterating (b) and (c) through t = 0, 1, 2, · · · . Does there exist
T < ∞ such that L(C(T−1),Ξ(T−1)) = L(C(t),Ξ(t))? Justify your
answers.

7. (20%) EM algorithm for mixture of uniform model
Consider the generative model parameterized by θ = (πk, bk)

K
k=1, where

bk > 0 and πk > 0 for each k, and that
∑K

k=1 πk = 1, so that the proba-
bility density function of generating a [0,∞)-valued number x is

p(x; θ) =

K∑
k=1

πk

bk
1[0,bk](x).
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That is, p(·; θ) is a mixture of uniform distributions. Suppose we observe
training data of N numbers x1, ..., xN ∈ [0,∞), derive the E-step and M-
step equations of the EM algorithm for optimizing the mixing coefficients
πk and the scalars bk by maximum likelihood. You may assume the initial

guess of the parameters θ(0) = (π
(0)
k , b

(0)
k )Kk=1 satisfy

max
1≤k≤K

b
(0)
k ≥ max

1≤i≤N
xi, min

1≤k≤K
b
(0)
k ≥ min

1≤i≤N
xi

8. (30%) Spherical one class SVM
Suppose we aim to fit a hypersphere which encompasses a majority of data
points x1, ...,xN ∈ RM by considering the following optimization problem:
(here µ and each xi are considered as column vectors)

minimize R2 + 1
ν

∑N
i=1 Ciξi

subject to
∥xi − µ∥2 ≤ R2 + ξi
ξi ≥ 0

}
∀i ∈ J1, NK

R ≥ 0
variables R ∈ R,µ ∈ RM , ξ = (ξ1, ..., ξN ) ∈ RN

(3)

where Ci > 0 for each i ∈ J1, NK, and 0 < ν <
∑N

i=1 Ci. Let ρ = R2 and
rewrite (3) in the form of primal problem:

minimize f(ρ,µ, ξ) = ρ+ 1
ν

∑N
i=1 Ciξi

subject to
g1,i(ρ,µ, ξ) = ∥xi − µ∥2 − ρ− ξi ≤ 0
g2,i(ρ,µ, ξ) = −ξi ≤ 0

}
∀i ∈ J1, NK

g3(ρ,µ, ξ) = −ρ ≤ 0
variables ρ ∈ R,µ ∈ RM , ξ ∈ RN

(4)

as well its Lagrangian dual problem:

maximize θ(α, β, γ) = infρ∈R,µ∈RM ,ξ∈RN L(ρ,µ, ξ, α, β, γ)
subject to αi ≥ 0, βi ≥ 0 ∀i ∈ J1, NK

γ ≥ 0
variables α = (α1, ..., αN ) ∈ RN , β = (β1, ..., βN ) ∈ RN , γ ∈ R

(5)

(a) (3%) Write down the Lagrangian function L(ρ,µ, ξ, α, β, γ) in ex-
plicit form of ρ,µ, ξ, α, β, γ.

(b) (4%) Show that the duality gap between (4) and (5) is zero.

(c) (4%) Derive θ(α, β, γ) in explicit form of dual variables α, β, γ.

(d) (3%) Show that the dual problem can be simplified as

maximize ∥α∥1
(∑N

i=1 α̂i∥xi∥2 −
∑

1≤i,j≤N α̂iα̂jx
T
i xj

)
subject to

∑N
i=1 αi ≤ 1

variables 0 ≤ αi ≤ Ci

ν , i ∈ J1, NK

(6)

where ∥α∥1 =
∑N

i=1 αi and αi = ∥α∥1α̂i.
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(e) (14%) Suppose (ρ̄, µ̄, ξ̄) and (ᾱ, β̄, γ̄) are the optimal solutions to
problems (4) and (5), respectively.

i. (2%) Show that ∥ᾱ∥1µ̄ =
∑N

i=1 ᾱixi.

ii. (3%) Show that

ρ̄ ∈ argmin
ρ≥0

(
ρ+

1

ν

N∑
i=1

Ci max(∥xi − µ̄∥2 − ρ, 0)

)
,

iii. (3%) Show that

min

ρ ≥ 0 :

N∑
i:∥xi−µ̄∥2≤ρ

Ci ≥ ν

 ≤ ρ̄ ≤ min

ρ ≥ 0 :

N∑
i:∥xi−µ̄∥2≤ρ

Ci > ν

 .

(7)

iv. (3%) Prove that ξ̄i = max
(
∥xi − µ̄∥2 − ρ̄, 0

)
for each i ∈ J1, NK.

v. (3%) Prove that ᾱi = Ci/ν , if ∥xi − µ̄∥2 > ρ̄
ᾱi = 0 , if ∥xi − µ̄∥2 < ρ̄
0 ≤ ᾱi ≤ Ci/ν , if ∥xi − µ̄∥2 = ρ̄

.

(f) (2%) Suppose Ci = 1/n for each i ∈ J1, nK. What is the physical
meaning of ν?
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