
EE 5184 Machine Learning, Fall 2021

Final Exam - Solution

Lecturer: Pei-Yuan Wu

January 6, 2022

This exam contains 6 problems and 120 pts in total. In this exam,

• For x ∈ R, we denote x+ = max(x, 0) and x− = max(−x, 0).

• Jm,nK denotes the set of integers from m to n.

1. (15%) Changing activation function in two-layered network
Consider a two-layer network f : RD → RK defined as

f(x) =

 f1(x)
...

fK(x)

 , fk(x) = σ

 M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji x

(i) + w
(1)
j0

)
+ w

(2)
k0


where x = (x(1), ..., x(D)), and that h, σ denote the nonlinear activation
functions for the hidden and output layers, respectively.

(a) (7%) Please draw the neural network that computes function f(x).
Please specify the nodes and the connections, as well as their corre-

spondence to the parameters w
(1)
ji and w

(2)
kj .

(b) (8%) Suppose originally the activation function of the hidden layer is
chosen as the sigmoid function h(z) = 1

1+e−z . Show that there exists
an equivalent network, which computes exactly the same function
f(x), but with hidden layer activation functions given by

hnew(z) = tanh(z) =
ez − e−z

ez + e−z
.

Hint: First find the relation between h(z) and tanh(z), and then
show that the parameters of the two networks differ by linear trans-
formations.
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2. (15%) Linear regression interpretation
Given training data of N input-output pairs D = ((xi, yi))

N
i=1, where xi ∈

X and yi ∈ R. Consider the generative model pθ(ξ|x) = N (ξ; fθ(x), σ2),
where N (ξ;µ, σ2) denotes the probability density function of Gaussian
distribution with mean µ and variance σ2, namely

N (ξ;µ, σ2) =
1√

2πσ2
exp

(
− (ξ − µ)2

2σ2

)
.

(a) (7%) Write down the error function Lml(θ) to be minimized so as to
maximize the log-likelihood function of generative model pθ, assum-
ing each of the N data points (xi, yi) is generated independently.

(b) (8%) Assume θ = (θ(1), ..., θ(L)), under Bayesian settings we assume
θ follows some prior distribution where θ(1), ..., θ(L) are independent
and Gaussian distributed with mean 0 and variance λ2. Denote Dx =
(xi)

N
i=1 and Dy = (yi)

N
i=1, we assume θ and Dx are independent.

Show that the posterior of θ after observing the training data D is
given by p(θ|D) ∝ exp (−LBayes(θ)), where

LBayes(θ) =
1

2σ2

N∑
i=1

(yi − fθ(xi))2 +
1

2λ2

N∑
i=1

‖θ‖22

with ‖θ‖p = p

√∑L
l=1

(
θ(l)
)p

denoting the p-norm of θ. Hence the

regularization term can be interpreted as the prior we pose on the
parameters θ.
Hint:

p(θ|D) =
p(θ,Dy|Dx)

p(Dy|Dx)
=

p(θ|Dx)p(Dy|θ,Dx)∫
p(θ′|Dx)p(Dy|θ′,Dx)dθ′

3. (15%) Gradient boosting with class-dependent risk
Let X be the input space, F be a collection of multiclass classifiers that
map from X to {±1}. Let ((xi, yi))

m
i=1 be the training data set, where

xi ∈ X and yi ∈ {±1}. Given T ∈ N, suppose we want to build classifer
h : X → {±1} of the form

h(x) = sign(gT+1(x)), gT+1(x) =

T∑
t=1

αtft(x),

where ft ∈ F and αt ∈ R for all t ∈ J1, T K. Please show how the functions
ft and coefficients αt are chosen by gradient boosting with an aim to
minimize the following loss function:

L(gT+1) = C1

∑
i:yi=1

e−gT+1(xi) + C2

∑
i:yi=−1

egT+1(xi)

where C1 and C2 are positive scalars indicating the panelty of misclassi-
fying a postive (negative) sample as a negative (positive) one. Note that
AdaBoost corresponds to the special case where C1 = C2 = 1.
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4. (20%) Gradient descent convergence
In this question we will study a sufficient condition under which gradient
descent is guaranteed to converge.

(a) (5%) Let f : [a, b] → R be a differentiable function, and that f ′ is
γ-Lipschitz, namely

|f ′(x)− f ′(y)| ≤ γ|x− y|

for all x, y ∈ [a, b]. Show that the following holds for all x ∈ [a, b]:

|f(x)− f(a)− f ′(a)(x− a)| ≤ γ(x− a)2/2.

Hint: Recall by fundamental theorem of calculus that

f(x) = f(a) +

∫ x

a

f ′(t)dt.

(b) (10%) Let f : Rn → R be a differentiable function, and that ∇f is
γ-Lipschitz, namely

‖∇f(x)−∇f(y)‖2 ≤ γ‖x− y‖2

for all x,y ∈ Rn. Recall that in gradient descent we start from some
x0 ∈ Rn and iteratively apply the following updates:

xk = xk−1 − η∇f(xk−1), k = 1, 2, ...

Show that

f(xk) ≤ f(xk−1)− η(1− γη/2)‖∇f(xk−1)‖22.

Hence the objective function decreases after gradient descent update.
Hint: Consider g(t) = f((1− t)xk−1 + txk) and apply (a).

(c) (5%) Continue (b), suppose we have the additional condition:

‖∇f(x)‖2 ≥ α(f(x)− f(x∗)) (1)

for all x ∈ Rn, where f(x∗) = infx∈Rn f(x) is the optimum. Show
that

f(x)− f(x∗) ≤ (1− αη(1− γη/2)) (f(x)− f(x∗)) ∀0 ≤ η ≤ 2/γ.

Hence the objective function decreases exponentially. (1) is usually
referred as the α-PL (Polyak-Lojasiewicz) condition.
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5. (20%) EM algorithm for mixture of Bernoulli model
Consider the generative model parameterized by θ = (πk,µk)Kk=1, where

π1, ..., πK ∈ [0, 1] satisfies
∑K
k=1 πk = 1, and that µ1, ...,µK ∈ [0, 1]D,

so that the probability of generating a D-dimensional binary vector x =
(x(1), ..., x(D)) ∈ {0, 1}D is

p(x; θ) =

K∑
k=1

πk

D∏
j=1

µx
(j)

kj (1− µkj)1−x
(j)

In other words, with given µk, the elements x(1), ..., x(D) are independent,
where x(j) follows Bernoulli distribution of mean µkj . Suppose we observe
training data of N binary vectors x1, ...,xN ∈ {0, 1}D, derive the E-step
and M-step equations of the EM algorithm for optimizing the mixing co-
efficients πk and the Bernoulli means µkj by maximum likelihood.

6. (35%) Sparse SVM
Given training data of N input-output pairs D = ((xi, yi))

N
i=1, where

xi ∈ X and yi ∈ {±1}. One can give two types of arguments in favor
of the SVM algorithm: one based on the sparsity of the support vectors,
another based on the notion of margin. Suppose instead of maximizing
the margin, we choose instead to maximize sparsity by minimizing the
p-norm of the vector α = (α1, ..., αN ) that defines the weight vector w,
for some p ≥ 1. In this question we consider the case p = 2, which leads
to the following optimization problem:

minimize f(α, b, ξ) = 1
2

∑N
i=1 α

2
i +

∑N
i=1 Ciξi

subject to yi

(∑N
j=1 αjyjxi · xj + b

)
≥ 1− ξi, i ∈ J1, NK

variables b ∈ R, αi ≥ 0, ξi ≥ 0, i ∈ J1, NK

which can be rewritten in the following primal problem:

minimize f(α, b, ξ) = 1
2

∑N
i=1 α

2
i +

∑N
i=1 Ciξi

subject to
g1,i(α, b, ξ) = 1− ξi − yi

(∑N
j=1 αjyjxi · xj + b

)
≤ 0

g2,i(α, b, ξ) = −αi ≤ 0
g3,i(α, b, ξ) = −ξi ≤ 0

 i ∈ J1, NK

variables α = (α1, ..., αN ) ∈ RN , b ∈ R, ξ = (ξ1, ..., ξN ) ∈ RN
(2)

as well as its Lagrangian dual problem:

maximize θ(ω, β,γ) = infα∈RN ,b∈R,ξ∈RN L(α, b, ξ,ω, β,γ)
subject to ωi ≥ 0, βi ≥ 0, γi ≥ 0, i ∈ J1, NK
variables ω = (ω1, ..., ωN ) ∈ RN , β = (β1, ..., βN ) ∈ RN ,γ = (γ1, ..., γN ) ∈ RN

(3)

(a) (5%) Write down the Lagrangian function L(α, b, ξ,ω, β,γ) in ex-
plicit form of α, b, ξ,ω, β,γ.
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(b) (5%) Show that the duality gap between (2) and (3) is zero.

(c) (5%) Derive θ(ω, β,γ) in explicit form of dual variables ω, β,γ.

(d) (5%) Show that the dual problem can be simplified as

maximize
∑N
i=1 ωi −

1
2

∑N
i=1

(∑N
j=1 ωjyjyixj · xi

)2
+

subject to
∑N
i=1 ωiyi = 0

variables 0 ≤ ωi ≤ Ci, i = 1, ..., N

(4)

(e) (15%) Suppose (ᾱ, b̄, ξ̄) and (ω̄, β̄, γ̄) are the optimal solutions to

problems (2) and (3) respectively. Denote w̄ =
∑N
j=1 ᾱjyjxj .

i. (4%) Prove that

ᾱi = max

 N∑
j=1

ω̄jyjyixj · xi, 0

 ∀i = 1, ..., N (5)

ii. (4%) Prove that

b̄ = arg min
b∈R

N∑
i=1

Ci max (1− yi (w̄ · xi + b) , 0) , (6)

iii. (4%) Prove that ξ̄i = max
(
1− yi

(
w̄ · xi + b̄

)
, 0
)

for all i =
J1, NK.

iv. (3%) Prove that

ᾱi = Ci, if yi
(
w̄ · xi + b̄

)
< 1

ᾱi = 0, if yi
(
w̄ · xi + b̄

)
> 1

0 ≤ ᾱi ≤ Ci, if yi
(
w̄ · xi + b̄

)
= 1

 ∀i = 1, ..., N
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