EE 5184 Machine Learning Final Exam

Date: 2021/01/08

The paper is double-sided, 5 pages, consisting of 7 questions. Total 105 points.

In this exam, unless otherwise specified, we denote $\sigma(z) = \frac{1}{1+e^{-z}}$ as the sigmoid function.

(5 pts) ReLU Function

Show that

$$\int_{-\infty}^{0} \sigma(z+t)dt = \log(1+e^{z})$$

Hence ReLU function can be interpreted as the sum of infinitely many shifted sigmoid functions.

(10 pts) Principle Component Analysis (PCA) 2.

Given m samples $x_1, ..., x_N \in \mathbb{R}^2$. Suppose

$$\frac{1}{N} \sum_{i=1}^{N} x_i = \mathbf{0}, \qquad \frac{1}{N} \sum_{i=1}^{N} x_i x_i^T = \begin{bmatrix} 12.01 & 1.68 \\ 1.68 & 6.74 \end{bmatrix}$$

- (1) (3 pts) Find $\frac{1}{N}\sum_{i=1}^{N}||x_i||_2^2$.
- (2) (4 pts) Find the first principle axis after performing PCA on this data set.
- (3) (3 pts) Denote u_i as the projection of x_i to the first principle axis. Find $\frac{1}{N}\sum_{i=1}^{N}||u_i||_2^2$.

3. (5 pts) Convolution Layer

A 6x6 input image of two channels is about to pass through a convolution layer which consists of one filter (kernel). The input image and the filter is illustrated as the following figure.

- (1) (3 pts) Please show the result (referred as feature map Z) after the input image has passed through this convolution layer. Assume no padding and stride=1.
- (2) (2 pts) Continuing (1), show the result after we apply 2x2 max-pool to the feature map Z.

<i>U</i> () /					,	1 2								
Channel 1								Channel 2						
	1	-1	1	1	1	1		1	1	1	-1	1	0	
Input image	1	0	0	1	1	-1		-1	1	1	0	-1	-1	
	-1	1	1	0	1	-1		1	-1	-1	1	0	-1	
	1	1	-1	-1	0	-1		-1	0	1	0	1	-1	
	0	-1	0	1	0	-1		0	0	0	0	1	1	
	-1	1	1	1	-1	1		0	0	-1	-1	1	-1	
					-1	-1		1	-1	1				
	Filt	Filter		-1	1		-1	1	1					
							1				1			

4. (20 pts) Maxout Network

Consider the following maxout network

The above neural network can be represented as a function f_{θ} , namely

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = f_{\theta} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right),$$

where parameter θ records all the weights w_{ij}^k .

(1) (6 pts) Suppose the weights are initialized as follows:

If $(x_1, x_2) = (1,10)$, please fill out the following table. No derivation required.

	•	, .										
Variable	z_1^1	Z_2^1	Z_3^1	Z_4^1	a_1	a_2	z_1^2	Z_2^2	Z_3^2	Z_4^2	y_1	y_2
Value												

(2) (6 pts) Continuing (1), if the ground truth is $(\hat{y}_1, \hat{y}_2) = (-8, -1)$, and the L1-loss is adopted, namely

$$L(\theta) = \left\| \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} - f_{\theta} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) \right\|_1 = |y_1 - \hat{y}_1| + |y_2 - \hat{y}_2|$$

Please compute $\frac{\partial L}{\partial w_{12}^1}$ and $\frac{\partial L}{\partial w_{41}^2}$.

(3) (5 pts) Let $g_1(x), g_2(x), ..., g_k(x)$ be convex functions, prove that

$$\mathbf{h}(\mathbf{x}) = \max \bigl(g_1(x), g_2(x), \dots, g_k(x) \bigr)$$

is also a convex function.

(4) (3 pts) Is it possible to implement the following piecewise-linear activation function φ with maxout network? If possible, please show how to implement; If impossible, please prove why it is impossible.

5. (20 pts) Gradient Boosting

Consider the binary classification problem, where we are given training data set $\{(x_i, y_i)\}_{i=1}^N$ with $x_i \in \mathbb{R}^d$ and $y_i \in \{\pm 1\}$. Let \mathcal{F} be a collection of binary classifiers, each mapping from \mathbb{R}^d to $\{\pm 1\}$. Given number of epochs $T \in \mathbb{N}$, suppose we want to find the function

$$g(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t f_t(\mathbf{x})$$

Where $f_t \in \mathcal{F}$ and $\alpha_t \in \mathbb{R}$ for all t = 1, ..., T, by which the aggregated classifier is given by

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } g(\mathbf{x}) > 0 \\ -1 & \text{if } g(\mathbf{x}) \le 0 \end{cases}$$

Please apply gradient boosting to show how the functions f_t and coefficients α_t are computed with an aim to minimize the following loss function

$$L(g) = \sum_{i=1}^{N} \log(1 + e^{-y_i g(x_i)})$$

6. (20 pts) Expectation Maximization Interpretation behind Semi-Supervised Learning

Given N samples $x_1, ..., x_N \in \mathbb{R}^m$ as well as their labels $y_1, ..., y_N \in \{0, 1, ..., K\}$. Consider the generative model where each sample x_i is generated independently according to Gaussian mixture model that depends on the label y_i , as represented by random variable

$$X_{i} \sim \begin{cases} \sum_{j=1}^{K} \pi_{j} \mathcal{N}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) & \text{, if } y_{i} = 0 \\ \mathcal{N}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) & \text{, if } y_{i} = k \neq 0 \end{cases}$$

where $\pi_1 + \dots + \pi_K = 1$, and $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ denotes the Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, with probability density function

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^m |\boldsymbol{\Sigma}|}} exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

We would like to apply Expectation Maximization algorithm to find the maximum likelihood

estimation of parameters $\theta = \{(\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\}_{k=1}^K$.

(1) (16 pts) Please write down the E-step and M-step and show that the parameters are updated from

$$\theta^{(t)} = \left\{ \left(\pi_k^{(t)}, \pmb{\mu}_k^{(t)}, \pmb{\Sigma}_k^{(t)} \right) \right\}_{k=1}^K \text{ to } \theta^{(t+1)} = \left\{ \left(\pi_k^{(t+1)}, \pmb{\mu}_k^{(t+1)}, \pmb{\Sigma}_k^{(t+1)} \right) \right\}_{k=1}^K \text{ in the following form:}$$

$$\pi_k^{(t+1)} = \frac{N_k + \sum_{i:y_i=0} \delta_{ik}^{(t)}}{N}$$

$$\mu_k^{(t+1)} = \frac{\sum_{i:y_i=k} x_i + \sum_{i:y_i=0} \delta_{ik}^{(t)} x_i}{N_k + \sum_{i:y_i=0} \delta_{ik}^{(t)}}$$

$$\Sigma_k^{(t+1)} = \frac{\sum_{i:y_i=k} \left(x_i - \pmb{\mu}_k^{(t+1)} \right) \left(x_i - \pmb{\mu}_k^{(t+1)} \right)^T + \sum_{i:y_i=0} \delta_{ik}^{(t)} \left(x_i - \pmb{\mu}_k^{(t+1)} \right) \left(x_i - \pmb{\mu}_k^{(t+1)} \right)^T}{N_k + \sum_{i:y_i=0} \delta_{ik}^{(t)}}$$

where $N_k = \sum_{i:v_i=k} 1$ is the number of samples in class k. Please show your derivations.

(2) (4 pts) What is the closed form expression of $\delta_{ik}^{(t)}$? Please show your derivations.

7. (25 pts) One-Class Support Vector Machine

Given unlabeled training data $x_1, ..., x_N \in \mathbb{R}^d$, the goal of <u>one-class SVM</u> is to find the "smallest" half space $S = \{x \in \mathbb{R}^d : w^T x \ge \rho\}$ that contains the most data points, as illustrated below.

Formally speaking, with a given hyper-parameter 0 < v < 1, the *one-class SVM* aims to solve the following optimization problem

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{\nu N} \sum_{i=1}^{N} \xi_i - \rho$$
subject to
$$\mathbf{w}^T \mathbf{x}_i \ge \rho - \xi_i, \ \forall i = 1, ..., N$$
variables
$$\mathbf{w} \in \mathbb{R}^d, \rho \in \mathbb{R}, \xi_1, ..., \xi_N \in \mathbb{R}$$

Which can be rewritten in the form of **primal problem**

minimize
$$f(\mathbf{w}, \rho, \boldsymbol{\xi}) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{\nu N} \sum_{i=1}^N \xi_i - \rho$$
 subject to
$$g_{1,i}(\mathbf{w}, \rho, \boldsymbol{\xi}) = \rho - \xi_i - \mathbf{w}^T \mathbf{x}_i \le 0$$

$$g_{2,i}(\mathbf{w}, \rho, \boldsymbol{\xi}) = -\xi_i \le 0$$

$$\forall i = 1, \dots, N$$
 variables
$$\mathbf{w} \in \mathbb{R}^d, \rho \in \mathbb{R}, \xi_1, \dots, \xi_N \in \mathbb{R}$$

(1) (7 pts) Show that the dual problem of *one-class SVM* can be written as

maximize
$$\theta(\alpha) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to
$$\sum_{i=1}^{N} \alpha_i = 1$$
 variables
$$0 \le \alpha_i \le \frac{1}{N^N}, \ i = 1, ..., N$$

Let $(\overline{w}, \overline{b}, \overline{\xi})$ be a primal optimal solution, $\overline{\alpha}$ be a dual optimal solution.

- (2) (8 pts) Which of the following statements are true? Please justify your answers.
 - i. $f(\overline{w}, \overline{\rho}, \overline{\xi}) = \theta(\overline{\alpha})$.
 - ii. If $\bar{\boldsymbol{w}}^T \boldsymbol{x}_i < \bar{\rho}$, then $\bar{\alpha}_i = 1/(\nu N)$.
 - iii. If $\bar{\mathbf{w}}^T \mathbf{x}_i > \bar{\rho}$, then $\bar{\alpha}_i = 0$.
 - iv. $\bar{\xi}_i = max(\bar{\rho} \bar{\boldsymbol{w}}^T \boldsymbol{x}_i, 0)$.
- (3) (5 pts) Show that the optimal bias $\bar{\rho}$ can be expressed in terms of the optimal weighting vector \bar{w} as

$$\bar{\rho} = \underset{\rho \in \mathbb{R}}{\operatorname{argmin}} \left(\frac{1}{\nu N} \sum\nolimits_{i=1}^{N} max(\rho - \overline{\boldsymbol{w}}^{T} \boldsymbol{x}_{i}, 0) - \rho \right)$$

(Hint: Rewrite the primal problem as an unconstrained optimization problem over variables \mathbf{w}, ρ)

(4) **(5 pts)** Suppose $k-1 < \nu N < k$, for which k is a positive integer, then how many among the N data points $x_1, ..., x_N$ satisfy $\overline{w}^T x \ge \overline{\rho}$? In other words, please compute $\sum_{i: \overline{w}^T x_i \ge \overline{\rho}} 1$. Please show your derivations.

(Hint: Solve the minimization problem in (3) by taking upper-derivatives)