EE 5184 Machine Learning Final Exam

Date: 2020/01/03

The paper is double-sided, 5 pages, consisting of 5 questions. Total 100 points.

Problem 1: (30 pts) Multiple Selection (多選題有倒扣,最多倒扣至本大題零分)

Please answer the following multiple selection questions. Wrong selections will result in inverted scores. *No derivation required.*

(1) Suppose a SVM classifier is trained from data set $\{(x_i, y_i)\}_{i=1}^N$, where $y_i \in \{\pm 1\}$ denotes the labels, and the classifier classifies x as positive label if $f(x) = w^T x + b \ge 0$.

The primal problem for solving w is given by

Minimize $\frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{N} \xi_i$

Subject to $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \forall i = 1, ..., N$

Variables $\mathbf{w} \in \mathbb{R}^d$, $b \in \mathbb{R}, \xi_1, ..., \xi_N \ge 0$

The dual problem for solving α_i 's in $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$ is given by

Maximize $\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$

Subject to $\sum_{i=1}^{N} \alpha_i y_i = 0$

Variables $0 \le \alpha_i \le C$

Upon achieving optimal in both primal and dual problems,

- (A) If $\alpha_i = C$ then $\xi_i > 0$.
- (B) If $\alpha_i > 0$ then $\xi_i > 0$.
- (C) If $\alpha_i = 0$ then $\xi_i = 0$.
- (D) If $\xi_i > 0$ then $\alpha_i > 0$.
- (E) If $\xi_i > 0$ then $\alpha_i = C$.
- (2) Select all that belong to supervised learning algorithms.
 - (A) Deep auto-encoder
 - (B) Hierarchical Agglomerative Clustering
 - (C) K-means
 - (D) Linear regression
 - (E) Logistic regression
 - (F) Locally Linear Embedding (LLE)
 - (G) Principle Component Analysis (PCA)
 - (H) Random forest
 - (I) Support Vector Machine (SVM)
 - (J) t-Distributed Stochastic Neighbor Embedding (t-SNE)
- (3) Suppose you are using a kernel SVM to 2 class classification problem, where the data points are distributed on the x-y plane (i.e., data points are 2 dimensional). Suppose we choose kernel function as $k((x,y),(x',y')) = (xx' + yy')^2$, which of the following decision boundaries, as described by equation f(x,y) = 0, are possible?

(A)
$$f(x,y) = (x-1)^2 + 3(y+2)^2 - 2$$
.

- (B) f(x, y) = 2x + 5y 4.
- (C) $f(x, y) = x^2 + 4xy + y^2 7$.
- (D) $f(x, y) = y \max(x, 0) + 6$.
- (E) f(x, y) = |x| 3.

EE 5184 Machine Learning Final Exam (2019 Fall)

- (4) Suppose you are using a kernel SVM to 2 class classification problem, where the data points are distributed on the x-y plane (i.e., data points are 2 dimensional). Suppose we choose kernel function as $k((x,y),(x',y')) = (1 + xx' + yy')^2$, which of the following decision boundaries, as described by equation f(x,y) = 0, are possible?
 - (A) $f(x,y) = (x-1)^2 + 3(y+2)^2 2$.
 - (B) f(x, y) = 2x + 5y.
 - (C) $f(x,y) = x^2 + 4xy + y^2 7$.
 - (D) $f(x, y) = y \max(x, 0) + 6$.
 - (E) f(x, y) = |x| 3.
- (5) Given training data $x_1, ..., x_N \in \mathbb{R}^d$ and their corresponding labels $y_1, ..., y_N \in \{\pm 1\}$, a linear classifier $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$ is often determined with parameters (\mathbf{w}, b) minimizing some loss function

$$L_{tot}(\mathbf{w}, \mathbf{b}) = \sum_{i=1}^{N} \ell(y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \lambda L_{reg}(\mathbf{w})$$

where $\ell(\cdot)$ describes the fitting error, and $\hat{L}_{reg}(\cdot)$ is the regularization term.

- (A) In SVM, the fitting error takes the form $\ell(z) = \max(z, 0)$.
- (B) In SVM, the regularization term takes the form $L_{reg}(\mathbf{w}) = \|\mathbf{w}\|_1$ (L1-norm).
- (C) In logistic regression, the fitting error takes the form $\ell(z) = \log(1 + e^{-z})$.
- (D) In logistic regression, the fitting error takes the form $\ell(z) = 1/(1 + e^z)$
- (E) In AdaBoost, the fitting error takes the form $\ell(z) = e^{-z}$.
- (6) Following (1), one may rewrite the SVM primal formulation as:

minimize
$$L(\mathbf{w}, b) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \max(1 - y_i(\mathbf{w}^T \mathbf{x}_i + b), 0)$$

- (A) Upon solving such optimization problem, gradient descent (with learning rate decreasing towards zero) always converges to global optimal, regardless of initialization.
- (B) If (w_1, b_1) and (w_2, b_2) are two local optimal solutions, then $w_1 = w_2$ and $b_1 = b_2$.
- (C) If $(\mathbf{w_1}, b_1)$ and $(\mathbf{w_2}, b_2)$ are two local optimal solutions, then $L(\mathbf{w_1}, b_1) = L(\mathbf{w_2}, b_2)$.
- (D)L(w, b) is a convex function.
- (E) If (\bar{w}, \bar{b}) is a global optimal solution, then $L(\bar{w}, \bar{b}) \leq NC$.
- (7) Consider applying Expectation Maximization (EM) algorithm for maximum likelihood estimation of Gaussian Mixture Model parameters θ . Let $\theta^{(0)}$ be the initial parameters, and let $\theta^{(1)}$, $\theta^{(2)}$, ... be the subsequent parameters in each epoch. Let $f(\theta)$ be the log-likelihood function. Hint: An upper-bounded non-decreasing sequence always converges.
 - (A) The likelihood function is always non-decreasing regardless of initialization.
 - (B) EM algorithm always converges to the same parameters, regardless of initialization. That is, $\theta^{(t)}$ converges (elementwise) to some fixed θ^* regardless of $\theta^{(0)}$.
 - (C) EM algorithm always converges to the same log-likelihood, regardless of initialization. That is, $f(\theta^{(t)})$ converges to some fixed number $r \in \mathbb{R}$ regardless of $\theta^{(0)}$.
 - (D) The likelihood function of EM algorithm always converges, regardless of initialization. That is, $\lim_{t\to\infty} f(\theta^{(t)})$ exists regardless of $\theta^{(0)}$.
 - (E) EM algorithm always converges to a global optimal $\bar{\theta}$ that yields the maximum likelihood function.

EE 5184 Machine Learning Final Exam (2019 Fall)

- (8) Which of the following statement(s) are true?
 - (A) In the training of a fully-connected neural network classifier (with ReLU activation function) where the cross-entropy loss is to be minimized through gradient descent, the loss is always non-increasing in each epoch regardless of initialization.
 - (B) A 1,000-layer fully-connected neural network with linear activation function is equivalent to a single layer neural network with linear activation function.
 - (C) A 1,000-layer fully-connected neural network with ReLU activation function is equivalent to a piecewise linear function.
 - (D) A 1,000-layer fully-connected neural network with sigmoid activation function is differentiable.
 - (E) The output of a softmax layer is always within the range [0,1].
- (9) Which of the following activation functions can be realized by maxout network?
 - (A) Identity function
 - (B) ReLU
 - (C) Leaky-ReLU
 - (D) Quadratic function
 - (E) Sigmoid function
- (10) In the setting of variational auto-encoder, given a collection of generative models p_{θ} (parameterized by θ) and dataset $X = \{x_1, ..., x_N\} \in \mathcal{X}$, one aims to find θ that maximizes the log-likelihood function $\log p_{\theta}(X)$. Introduce latent variables $Z = \{z_1, ..., z_N\} \in \mathcal{Z}$, and for arbitrary probability distribution q_{ϕ} (parameterized by ϕ) on \mathcal{X} and \mathcal{Z} , define

$$L(p_{\theta}, q_{\phi}, X) = \int_{Z} q_{\phi}(Z|X) \log \frac{p_{\theta}(Z, X)}{q_{\phi}(Z|X)} dZ$$

$$R(p_{\theta}, q_{\phi}, X) = -\int_{Z} q_{\phi}(Z|X) \log \frac{p_{\theta}(Z|X)}{q_{\phi}(Z|X)} dZ$$

Which of the following statements are true?

- (A) $R(p_{\theta}, q_{\phi}, X)$ is always non-negative.
- (B) $R(p_{\theta}, q_{\phi}, X)$ is always non-positive.
- (C) $\log p_{\theta}(X) = L(p_{\theta}, q_{\phi}, X) + R(p_{\theta}, q_{\phi}, X)$
- (D) Fix θ and adjust ϕ , then the maximum of $L(p_{\theta}, q_{\phi}, X)$ is achieved when $q_{\phi}(Z|X) = p_{\theta}(Z|X)$ (Assume such ϕ exists).
- (E) Assume $q_{\phi}(Z|X) = p_{\theta}(Z|X)$, and suppose $L(p_{\theta'}, q_{\phi}, X) > L(p_{\theta}, q_{\phi}, X)$, then $\log p_{\theta'}(X) > \log p_{\theta}(X)$.

Problem 2: (10 pts) Principle Component Analysis (PCA)

Given m samples $x_1, ..., x_N \in \mathbb{R}^2$. Suppose

$$\frac{1}{N}\sum_{i=1}^{N}x_{i}=\mathbf{0}, \qquad \frac{1}{N}\sum_{i=1}^{N}x_{i}x_{i}^{T}=\begin{bmatrix} 66 & 12\\ 12 & 59 \end{bmatrix}$$

- (1) (3 pts) Find $\frac{1}{N} \sum_{i=1}^{m} ||x_i||_2^2$.
- (2) (4 pts) Find the first principle axis after performing PCA on this data set.
- (3) (3 pts) Denote u_i as the projection of x_i to the first principle axis. Find $\frac{1}{N}\sum_{i=1}^{m}||u_i||_2^2$.

Problem 3: (20 pts) Concentric disks are PAC-learnable

Let $\mathcal{X} = \mathbb{R}^2$ be the input space and consider the set of concepts of the form $c = \{(x, y): x^2 + y^2 \le r^2\}$ for some real number r. Show that this class can be (ϵ, δ) -PAC-learned from training data of size $m \ge (1/\epsilon)\log(1/\delta)$.

Problem 4: (20 pts) Expectation Maximization and Exponential Mixture Models

Given m samples $x_1, ..., x_N \in [0, \infty)$, we would like to cluster them into K clusters. Assume the samples are generated according to Exponential mixture models

$$X \sim \sum_{j=1}^{K} \pi_j \operatorname{Exp}(\tau_j)$$

where $\pi_1 + \dots + \pi_K = 1$, and $\text{Exp}(\tau)$ denotes the exponential distribution with probability density function

$$f_{\lambda}(\tau) = \begin{cases} (1/\tau)e^{-x/\tau} &, x \ge 0\\ 0 &, x < 0 \end{cases}$$

We would like to apply Expectation Maximization algorithm to find the maximum likelihood estimation of parameters $\theta = \{(\pi_k, \tau_k)\}_{k=1}^K$.

(1) (16 pts) Please write down the E-step and M-step and show that the parameters are updated from

$$\theta^{(t)} = \left\{ (\pi_k^{(t)}, \tau_k^{(t)}) \right\}_{k=1}^K \text{ to } \theta^{(t+1)} = \left\{ (\pi_k^{(t+1)}, \tau_k^{(t+1)}) \right\}_{k=1}^K \text{ in the following form:}$$

$$\tau_k^{(t+1)} = \frac{\sum_{i=1}^N \delta_{ik}^{(t)} x_i}{\sum_{i=1}^N \delta_{ik}^{(t)}}, \qquad \pi_k^{(t+1)} = \frac{1}{N} \sum_{i=1}^N \delta_{ik}^{(t)}$$

(2) (4 pts) What is the closed form expression of $\delta_{ik}^{(t)}$?

Problem 5: (20 pts) Support Vector Machine with Quadratic Hinge Loss

Given $x_1, ..., x_N \in \mathbb{R}^d$ and their corresponding labels $y_1, ..., y_N \in \{\pm 1\}$, consider soft-margin SVM with quadratic hinge loss (referred as *quadSVM* in the following context):

minimize
$$\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i^2$$
subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \ i = 1, ..., N$$
variables
$$\xi_i \ge 0, \ i = 1, ..., N$$

with C > 0. We may rewrite quadSVM in the standard primal formulation/problem

minimize
$$f(\mathbf{w}, \mathbf{b}, \boldsymbol{\xi}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i^2$$
 subject to
$$g_i(\mathbf{w}, \mathbf{b}, \boldsymbol{\xi}) = 1 - \xi_i - (y_i(\mathbf{w}^T \mathbf{x}_i + b)) \le 0, \ i = 1, ..., N$$
 variables
$$\xi_i \ge 0, \ i = 1, ..., N$$

(1) (15 pts) Show that the dual formulation/problem of quadSVM can be written as

maximize
$$\theta(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j - \frac{1}{4C} \sum_{i=1}^{N} \alpha_i^2$$
 subject to
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$
 variables
$$\alpha_i \ge 0, \ i = 1, ..., N$$

- (2) (5 pts) Let $(\overline{w}, \overline{b}, \overline{\xi})$ be a primal optimal solution, $\overline{\alpha}$ be a dual optimal solution. Which of the following statements are true?
 - (A) $f(\overline{\boldsymbol{w}}, \overline{b}, \overline{\boldsymbol{\xi}}) = \theta(\overline{\boldsymbol{\alpha}})$
 - (B) $\bar{\xi}_i = max(1 y_i(\bar{\boldsymbol{w}}^T\boldsymbol{x}_i + \bar{b}), 0)$
 - (C) If $y_i(\bar{\boldsymbol{w}}^T\boldsymbol{x}_i + \bar{b}) > 1$, then $\bar{\alpha}_i = 0$.
 - (D) $0 \le \bar{\alpha}_i \le C$ for all i = 1, ..., N.
 - (E) There exists $\gamma > 0$ such that $\bar{\xi_i} = \gamma \bar{\alpha}_i$ for all i = 1, ..., N.