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EE 5184 Machine Learning Final Exam 
Date: 2020/01/03 

The paper is double-sided, 5 pages, consisting of 5 questions. Total 100 points. 

Problem 1: (30 pts) Multiple Selection (多選題有倒扣，最多倒扣至本大題零分) 

Please answer the following multiple selection questions. Wrong selections will result in inverted scores. 

No derivation required. 

(1) Suppose a SVM classifier is trained from data set {(𝒙𝑖,  𝑦𝑖)}𝑖=1
𝑁 , where 𝑦𝑖 ∈ {±1} denotes the 

labels, and the classifier classifies 𝒙 as positive label if f(𝐱) = 𝒘𝑇𝒙 + 𝑏 ≥ 0. 

The primal problem for solving 𝒘 is given by 

Minimize  
1

2
‖𝒘‖𝟐 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1  

Subject to  𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,∀𝑖 = 1,… , N 

Variables   𝒘 ∈ ℝ𝒅,  𝑏 ∈ ℝ, 𝜉1, … , 𝜉𝑁 ≥ 0 

The dual problem for solving 𝛼𝑖’s in 𝒘 = ∑ 𝛼𝑖𝑦𝑖𝒙𝑖
𝑁
𝑖=1  is given by 

Maximize  ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝒙𝑖

𝑇𝒙𝑗)
𝑁
𝑗=1

𝑁
𝑖=1  

Subject to  ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 = 0 

Variables   0 ≤ 𝛼𝑖 ≤ 𝐶 

Upon achieving optimal in both primal and dual problems, 

(A) If 𝛼𝑖 = 𝐶 then 𝜉𝑖 > 0. 

(B) If 𝛼𝑖 > 0 then 𝜉𝑖 > 0. 

(C) If 𝛼𝑖 = 0 then 𝜉𝑖 = 0. 

(D) If 𝜉𝑖 > 0 then 𝛼𝑖 > 0. 

(E) If 𝜉𝑖 > 0 then 𝛼𝑖 = 𝐶. 

 

(2) Select all that belong to supervised learning algorithms. 

(A) Deep auto-encoder 

(B) Hierarchical Agglomerative Clustering 

(C) K-means 

(D) Linear regression 

(E) Logistic regression 

(F) Locally Linear Embedding (LLE) 

(G) Principle Component Analysis (PCA) 

(H) Random forest 

(I) Support Vector Machine (SVM) 

(J) t-Distributed Stochastic Neighbor Embedding (t-SNE) 

 

(3) Suppose you are using a kernel SVM to 2 class classification problem, where the data points are 

distributed on the x-y plane (i.e., data points are 2 dimensional). Suppose we choose kernel function 

as k((x, y), (x′, y′)) = (𝑥𝑥′ + 𝑦𝑦′)2, which of the following decision boundaries, as described by 

equation f(x, y) = 0, are possible? 

(A) f(x, y) = (𝑥 − 1)2 + 3(𝑦 + 2)2 − 2. 

(B) f(x, y) = 2x + 5y − 4. 

(C) f(x, y) = 𝑥2 + 4xy + 𝑦2 − 7. 

(D) f(x, y) = y − max(x, 0) + 6. 

(E) f(x, y) = |x| − 3.  
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(4) Suppose you are using a kernel SVM to 2 class classification problem, where the data points are 

distributed on the x-y plane (i.e., data points are 2 dimensional). Suppose we choose kernel function 

as k((x, y), (x′, y′)) = (1 + 𝑥𝑥′ + 𝑦𝑦′)2, which of the following decision boundaries, as described 

by equation f(x, y) = 0, are possible? 

(A) f(x, y) = (𝑥 − 1)2 + 3(𝑦 + 2)2 − 2. 

(B) f(x, y) = 2x + 5y. 

(C) f(x, y) = 𝑥2 + 4xy + 𝑦2 − 7. 

(D) f(x, y) = y − max(x, 0) + 6. 

(E) f(x, y) = |x| − 3. 

 

(5) Given training data 𝒙1, … , 𝒙𝑁 ∈ ℝ𝑑 and their corresponding labels 𝑦1, … , 𝑦𝑁 ∈ {±1}, a linear 

classifier h(𝐱) = sign(𝒘𝑇𝒙 + 𝑏) is often determined with parameters (𝒘, 𝑏) minimizing some loss 

function  

𝐿𝑡𝑜𝑡(𝐰, b) =∑ ℓ(𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏))

𝑁

𝑖=1
+ λ𝐿𝑟𝑒𝑔(𝐰) 

where ℓ(∙) describes the fitting error, and 𝐿𝑟𝑒𝑔(∙) is the regularization term. 

(A) In SVM, the fitting error takes the form ℓ(𝑧) = max⁡(𝑧, 0). 
(B) In SVM, the regularization term takes the form 𝐿𝑟𝑒𝑔(𝐰) = ‖𝐰‖1 (L1-norm). 

(C) In logistic regression, the fitting error takes the form ℓ(𝑧) = log(1 + 𝑒−𝑧). 
(D) In logistic regression, the fitting error takes the form ℓ(𝑧) = 1/(1 + 𝑒𝑧) 
(E) In AdaBoost, the fitting error takes the form ℓ(𝑧) = 𝑒−𝑧. 

 

(6) Following (1), one may rewrite the SVM primal formulation as: 

minimize⁡
𝒘∈ℝ𝒅, 𝑏∈ℝ

𝐿(𝒘, 𝑏) =
1

2
‖𝒘‖𝟐 + 𝐶∑ max(1 − 𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏), 0)
𝑁

𝑖=1
 

(A) Upon solving such optimization problem, gradient descent (with learning rate decreasing 

towards zero) always converges to global optimal, regardless of initialization. 

(B) If (𝒘𝟏, 𝑏1) and (𝒘𝟐, 𝑏2) are two local optimal solutions, then 𝒘1 = 𝒘2 and 𝑏1 = 𝑏2. 

(C) If (𝒘𝟏, 𝑏1) and (𝒘𝟐, 𝑏2) are two local optimal solutions, then 𝐿(𝒘1, 𝑏1) = 𝐿(𝒘2, 𝑏2). 
(D) 𝐿(𝒘, 𝑏) is a convex function. 

(E) If (𝒘̅, 𝑏̅) is a global optimal solution, then 𝐿(𝒘̅, 𝑏̅) ≤ 𝑁𝐶. 

 

(7) Consider applying Expectation Maximization (EM) algorithm for maximum likelihood estimation of 

Gaussian Mixture Model parameters 𝜃. Let 𝜃(0) be the initial parameters, and let 𝜃(1), 𝜃(2), … be 

the subsequent parameters in each epoch. Let f(𝜃) be the log-likelihood function. 

Hint: An upper-bounded non-decreasing sequence always converges. 

(A) The likelihood function is always non-decreasing regardless of initialization. 

(B) EM algorithm always converges to the same parameters, regardless of initialization. That is, 

𝜃(𝑡) converges (elementwise) to some fixed 𝜃∗ regardless of 𝜃(0). 
(C) EM algorithm always converges to the same log-likelihood, regardless of initialization. That is, 

f(𝜃(𝑡)) converges to some fixed number r ∈ ℝ regardless of 𝜃(0). 
(D) The likelihood function of EM algorithm always converges, regardless of initialization. That is, 

lim
𝑡→∞

f(𝜃(𝑡)) exists regardless of 𝜃(0). 

(E) EM algorithm always converges to a global optimal 𝜃̅ that yields the maximum likelihood 

function. 
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(8) Which of the following statement(s) are true? 

(A) In the training of a fully-connected neural network classifier (with ReLU activation function) 

where the cross-entropy loss is to be minimized through gradient descent, the loss is always non-

increasing in each epoch regardless of initialization. 

(B) A 1,000-layer fully-connected neural network with linear activation function is equivalent to a 

single layer neural network with linear activation function. 

(C) A 1,000-layer fully-connected neural network with ReLU activation function is equivalent to a 

piecewise linear function. 

(D) A 1,000-layer fully-connected neural network with sigmoid activation function is differentiable. 

(E) The output of a softmax layer is always within the range [0,1]. 
 

(9) Which of the following activation functions can be realized by maxout network? 

(A) Identity function 

(B) ReLU 

(C) Leaky-ReLU 

(D) Quadratic function 

(E) Sigmoid function 

 

(10) In the setting of variational auto-encoder, given a collection of generative models 𝑝𝜃 

(parameterized by 𝜃) and dataset 𝑋 = {𝒙1, … , 𝒙𝑁} ∈ 𝒳, one aims to find θ that maximizes the log-

likelihood function log 𝑝𝜃(𝑋).  Introduce latent variables 𝑍 = {𝒛1, … , 𝒛𝑁} ∈ 𝒵, and for arbitrary 

probability distribution 𝑞𝜙 (parameterized by ϕ) on 𝒳 and 𝒵, define 

𝐿(𝑝𝜃, 𝑞𝜙, 𝑋) = ∫ 𝑞𝜙(𝑍|𝑋) log
𝑝𝜃(𝑍, 𝑋)

𝑞𝜙(𝑍|𝑋)
𝑑𝑍

𝒵

 

𝑅(𝑝𝜃, 𝑞𝜙, 𝑋) = −∫ 𝑞𝜙(𝑍|𝑋) 𝑙𝑜𝑔
𝑝𝜃(𝑍|𝑋)

𝑞𝜙(𝑍|𝑋)
𝑑𝑍

𝒵

 

Which of the following statements are true? 

(A) 𝑅(𝑝𝜃, 𝑞𝜙, 𝑋) is always non-negative. 

(B) 𝑅(𝑝𝜃, 𝑞𝜙, 𝑋) is always non-positive. 

(C) log 𝑝𝜃(𝑋) = 𝐿(𝑝𝜃, 𝑞𝜙, 𝑋) + 𝑅(𝑝𝜃, 𝑞𝜙, 𝑋) 

(D) Fix 𝜃 and adjust 𝜙, then the maximum of 𝐿(𝑝𝜃, 𝑞𝜙, 𝑋) is achieved when 𝑞𝜙(𝑍|𝑋) =

𝑝𝜃(𝑍|𝑋) (Assume such 𝜙 exists). 

(E) Assume 𝑞𝜙(𝑍|𝑋) = 𝑝𝜃(𝑍|𝑋), and suppose 𝐿(𝑝𝜃′ , 𝑞𝜙, 𝑋) > 𝐿(𝑝𝜃, 𝑞𝜙, 𝑋), then log 𝑝𝜃′(𝑋) >

log 𝑝𝜃(𝑋). 

 

Problem 2: (10 pts) Principle Component Analysis (PCA) 

Given m samples 𝒙1, … , 𝒙𝑁 ∈ ℝ2. Suppose 

1

𝑁
∑𝒙𝑖 = 𝟎

𝑁

𝑖=1

,
1

𝑁
∑𝒙𝑖𝒙𝑖

𝑇 = [
66 12
12 59

]

𝑁

𝑖=1

 

(1) (3 pts) Find 
1

𝑁
∑ ‖𝒙𝑖‖2

2𝑚
𝑖=1 . 

(2) (4 pts) Find the first principle axis after performing PCA on this data set. 

(3) (3 pts) Denote 𝒖𝑖 as the projection of 𝒙𝑖 to the first principle axis.  Find 
1

𝑁
∑ ‖𝒖𝑖‖2

2𝑚
𝑖=1 . 
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Problem 3: (20 pts) Concentric disks are PAC-learnable 

Let 𝒳 = ℝ2 be the input space and consider the set of concepts of the form c = {(𝑥, 𝑦): 𝑥2 + 𝑦2 ≤ 𝑟2} 

for some real number r. Show that this class can be (ϵ, δ)-PAC-learned from training data of size m ≥

(1/ϵ)log⁡(1/𝛿). 

 

Problem 4: (20 pts) Expectation Maximization and Exponential Mixture Models 

Given m samples 𝑥1, … , 𝑥𝑁 ∈ [0,∞), we would like to cluster them into K clusters.  Assume the 

samples are generated according to Exponential mixture models 

X~∑𝜋𝑗Exp(𝜏𝑗)

𝐾

𝑗=1

 

where 𝜋1 +⋯+ 𝜋𝐾 = 1, and Exp(𝜏) denotes the exponential distribution with probability density 

function 

𝑓𝜆(𝜏) = {
(1/𝜏)𝑒−𝑥/𝜏 , 𝑥 ≥ 0
0⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ , 𝑥 < 0

 

We would like to apply Expectation Maximization algorithm to find the maximum likelihood 

estimation of parameters 𝜃 = {(𝜋𝑘, 𝜏𝑘)}𝑘=1
𝐾 .  

(1) (16 pts) Please write down the E-step and M-step and show that the parameters are updated from 

𝜃(𝑡) = {(𝜋𝑘
(𝑡)
, 𝜏𝑘

(𝑡)
)}

𝑘=1

𝐾

 to 𝜃(𝑡+1) = {(𝜋𝑘
(𝑡+1)

, 𝜏𝑘
(𝑡+1)

)}
𝑘=1

𝐾

 in the following form: 

𝜏𝑘
(𝑡+1)

=
∑ 𝛿𝑖𝑘

(𝑡)
𝑥𝑖

𝑁
𝑖=1

∑ 𝛿𝑖𝑘
(𝑡)𝑁

𝑖=1

, 𝜋𝑘
(𝑡+1)

=
1

𝑁
∑𝛿𝑖𝑘

(𝑡)

𝑁

𝑖=1

 

(2) (4 pts) What is the closed form expression of 𝛿𝑖𝑘
(𝑡)

? 
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Problem 5: (20 pts) Support Vector Machine with Quadratic Hinge Loss 

Given 𝒙1, … , 𝒙𝑁 ∈ ℝ𝑑 and their corresponding labels 𝑦1, … , 𝑦𝑁 ∈ {±1}, consider soft-margin SVM 

with quadratic hinge loss (referred as quadSVM in the following context): 

minimize 
1

2
‖𝒘‖2 + 𝐶∑ 𝜉𝑖

2
𝑁

𝑖=1
 

 
subject to 𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, i = 1,… , N 

variables 𝜉𝑖 ≥ 0, i = 1,… , N 

with C > 0. We may rewrite quadSVM in the standard primal formulation/problem 

minimize f(𝐰, b, 𝝃) =
1

2
‖𝒘‖2 + 𝐶∑ 𝜉𝑖

2
𝑁

𝑖=1
 

 
subject to 𝑔𝑖(𝐰, b, 𝝃) = 1 − 𝜉𝑖 − (𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏)) ≤ 0, i = 1,… , N 

variables 𝜉𝑖 ≥ 0, i = 1,… , N 

(1) (15 pts) Show that the dual formulation/problem of quadSVM can be written as 

maximize 𝜃(𝜶) =∑ 𝛼𝑖
𝑁

𝑖=1
−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗
𝑁

𝑗=1

𝑁

𝑖=1
−

1

4𝐶
∑𝛼𝑖

2

𝑁

𝑖=1

 

subject to ∑ 𝛼𝑖𝑦𝑖
𝑁

𝑖=1
= 0 

variables 𝛼𝑖 ≥ 0, i = 1,… , N 

 

(2) (5 pts) Let (𝒘̅, 𝑏̅, 𝝃̅) be a primal optimal solution, 𝜶̅ be a dual optimal solution. Which of the 

following statements are true? 

(A) f(𝒘̅, 𝑏̅, 𝝃̅) = 𝜃(𝜶̅) 

(B) 𝜉𝑖̅ = 𝑚𝑎𝑥(1 − 𝑦𝑖(𝒘̅
𝑇𝒙𝑖 + 𝑏̅), 0) 

(C) If 𝑦𝑖(𝒘̅
𝑇𝒙𝑖 + 𝑏̅) > 1, then 𝛼̅𝑖 = 0. 

(D) 0 ≤ 𝛼̅𝑖 ≤ C for all i = 1,… , N. 

(E) There exists 𝛾 > 0 such that 𝜉𝑖̅ = 𝛾𝛼̅𝑖 for all i = 1,… , N. 

 


